NH
& JOURNAL OF

\$ AN AT
;@ GEOMETRY ao>
PHYSICS
ELSEVIER Journal of Geometry and Physics 44 (2003) 407-474

www elsevier.com/locate/jgp

Geometric and analytic properties of families of
hypersurfaces in Eguchi-Hanson space

Pablo Ramacher

Humboldt-Universitat zu Berlin, Institut fir Reine Mathematik, Sitz, Rudower Chaussee 25,
D-10099 Berlin, Germany

Received 6 June 2001; accepted 7 September 2001

Abstract

We study the geometry of families of hypersurfaces in Eguchi-Hanson space that arise as com-
plex line bundles over curves § and are three-dimensional, non-compact Riemannian manifolds,
which are foliated in Hopf tori for closed curves. They are negatively curved, asymptotically flat
spaces, and we compute the complete three-dimensional curvature tensor as well as the second fun-
damental form, giving also some results concerning their geodesic flow. We show the non-existence
of L?-harmonic functions on these hypersurfaces for eyery 1 and arbitrary curves, and deter-
mine the infima of the spectra of the Laplace and of the square of the Dirac operator in the case of
closed curves. We also show that, in this case, zero lies in the spectrum of the Dirac operator. For
circles we compute the2-kernel of the Dirac operator in the sense of spectral theory and show that
it is trivial. We consider further the Einstein—Dirac system on these spaces and construct explicit
examples ofr-Killing spinors on them.
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1. Introduction

In this paper, we shall study certain families of hypersurfaces in Eguchi-Hanson space
that arise as complex line bundles over curveS§onr CU{oco}. They are three-dimensional,
open, asymptotically flat Riemannian manifolds of non-positive scalar curvature which, in
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case of a closed curve, are foliated in Hopf tori. We describe their geometry in detail, com-
puting the complete three-dimensional curvature tensor as well as the second fundamental
form, and give also some results on the structure of the geodesic flow. Since an explicit
description of the geometric properties of these hypersurfaces is possible, we are able to
make precise statements about the spectra of the scalar Laplacian and the Dirac operator
and also about the existence of solutions of spinorial field equations. In particular, we show
that there are né.”-harmonic functions for every > 1 and arbitrary curves, and that for
curves arising by Mébius transforms from closed curves the spectra of the scalar Laplacian
and the square of the Dirac operator come arbitrarily close to zero, implying that zero lies in
the spectrum of the considered operators. In the mentioned case, it also turns out that zero
lies in the spectrum of the Dirac operator. In case that the considered curves are generalized
circles inC that arise by Mobius transforms from circlesGnwith center at the origin the
L2-kernel of the Dirac operator in the sense of spectral theory can be computed explicitly
and we show that it is trivial. As it turns out, these hypersurfaces do not admit solutions
to the Einstein—Dirac system; such solutions can only be obtained by deformation into a
singular situation. Nevertheless, we can construct explicit exampl&skifling spinors,

which are solutions of a generalized Killing equation for spinors.

Hopf tori have been extensively studied, see, 4], and where first considered by
Pinkall [19]. If = : §% — $? denotes the Hopf fibration, the inverse image of any closed
curve in $? will be an immersed torus i3, which is called aHopf torus Using Hopf
tori, Pinkall showed that every compact Riemann surface of genus one can be conformally
embedded as a flat torus into the unit sph#teAs a further application, and using elastic
curves inS2, he constructed new examples of compact embedded Willmore surfagés in
which are extremal surfaces for the Willmore functiofi@ dA, wherefy denotes the mean
curvature.

The Eguchi—-Hanson metric is a four-dimensional metric, which can be constructed in
the total space of the fibratiop : 7*P1(C) — PL(C) ~ $2, and since its holonomy is
contained in S\R), itis Ricci-flat and self-dual. Both the Hopf fibrati@nand the projection
p are compatible with the action of(@) in C U {oc}, and, like the standard metric 5%,
the Eguchi-Hanson metric is invariant under this action. Therefore, its restriction to the
three-dimensional projective spaBé(R), which is immersed i *P1(C) as the set of
all cotangential vectors of unit length, corresponds exactly to the standard mestc in
For this reason the projectign is a geometric extension of the Hopf fibration, and the
preimage of any closed curve 64 under the projectiop gives rise to a three-dimensional
non-compact Riemannian manifold foliated in Hopf tori. Its end is of topological type
T2 x (0, o0)/{£1}, whereT 2 is the two-dimensional torus. Nevertheless, the corresponding
Willmore functional turns out to be unbounded, so that the considered hypersurfaces are
not accessible to integral geometry. The interest in Eguchi—-Hanson space itself originates
from a result of Schoen and Y§20], who proved that a complete asymptotically Euclidean
four-manifold whose Ricci tensor vanishes is necessarily flat. For Ricci-flat asymptotically
locally Euclidean (ALE) Ké&hler metrics this turns out not to be true, the first example of
such a metric being given by the Eguchi—Hanson médiic

We give now a description of the main results of this w@kctions 2—&re concerned
with the geometry of the hypersurfaces studi€dctions 6, 8 and @ith the spectra of
the Dirac and the Laplace operator, whBection 7is devoted to the study of spinorial
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field equations. The Eguchi—-Hanson metric is describegkiction 2 it depends on a real
parameter > 0, thus giving rise to a one-parameter family of Riemannian megrics
These metrics become degenerate along the zero section in case-tBafFor any curve

I(s) = r(s) €7@ in C U {00} ~ PX(C), we consider its preimag¥/3 := p~1(I") and

obtain a family of hypersurfacea/3., i,), where we assume that(s) is parameterized by

arc length and, denotes the induced Riemannian metric. Each of these hypersurfaces is a
complex line bundle oveF’, and introducing the polar coordinatesandg in each fiber,

we obtain a parameterization Mfi outside the zero section by the coordinates ¢, see
Section 3Since the coefficients df, do not depend on, the corresponding!-symmetry

is an isometry. We determine the inner geometry of the hypersurfaces @hddanem 1the
complete Ricci tensor is computed with respect to an orthonormal frame, one eigenvalue
being positive, one negative and the third one becoming negative at infinity, yielding, for
the scalar curvature, the expression

A G
T @R

It is negative and tends to zero for largendr with the order %02(r% + 1). Fort # 0,

S remains regular ap = 0, i.e., the scalar curvature vanishes on the zero section. In
Section 4we turn to the study of the Levi-Civita connection of the Eguchi-Hanson space
and determine the second fundamental form of the hypersurMﬁewith respect to the
above orthonormal frame, thus obtaining

0 0 0

K K
i |0 0 V21
I = 2V r2+1 |,
K | K 5
4oV r2+1

see Theorem 2and Corollary 1, where K is the function, K = 20%(r%2 + 1)%/

Vo*(r?2 + 1)2 + t4 and$ denotes the mean curvature. It is given by the geodesic curvature
kg of I" as a curve irs? according to the formula

2
H= k
/,/9402 +D244 ¢

This appears to be natural, since the geometry of the vector biititif C) is determined

by the elliptic geometry oPX(C) ~ $2. The above formula also implies thMﬁ is a
minimal surface if and only ik, = 0, i.e., if I" is a great circle ins2. Further, since the
function 02(r2 + 1) corresponds to the distance THP1(C), both the scalar curvaturg

and the mean curvatusg, as well as the components of the Ricci tensor and of the second
fundamental form, are manifestly invariant under the action of the isometry gro2ip U
Section Scontains some results concerning the geodesic flow of the hypersult@cc—&o,

in casel" is a circle inC with center at the origin, we are able to compute the distance of a
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pointin Mﬁ to the curvel” ¢ M2, i.e., to the zero section, seeoposition 10and, in this
way, to calculate the exponential growthMﬁ explicitly.

In Section &he vanishing of thé.”-kernel,p > 1, of the scalar Laplacian on the hyper-
surfaces M3, h,) is proved for every > 0 and every curvd™ by showing the existence
of a canonical exhaustion function on the considered hypersurfacé,gmesition 1&nd
Corollary 4 The result then follows from the work of Greene and [A@j, who studied inte-
grals of certain generalized subharmonic functions on connected non-compact Riemannian
manifolds admitting such a function, and showed that these integrals cannot be bounded.
For the smallest spectral value of the scalar Laplacian we obtaiBedtion 9 the first
estimate

po(MP) <172, 1 >0,
whererl is a closed curve, se@orollary 5 since by general theory lower bounds for the
Ricci tensor of open complete manifolds imply upper bounds for the smallest spectral value
of the Laplace operatd5]. By using the min—max principle we are then able to determine
the infimum of the spectrum of the closure of the Laplaciaan (M3, hy), obtaining

info(A) <6

for everys > 0 and arbitrary > 0 and closed curveE. Since, byCorollary 4 zero can

be noL2-eigenvalue, we therefore get that zero liegigd A), the essential spectrum of

A. A result of Brookg[3] then implies that in this case the hypersurfaﬁzqis must be of
subexponential growth, generalizing the previously obtained re3edtion 7is devoted to

the study of spinorial field equations. [18], Friedrich and Kim showed that in dimension

3 the existence of a solution to the Einstein—Dirac system is equivalent to the existence
of a so-called weak Killing (WK) spinor. For the existence of such a spinor geometric
integrability conditions that are independent of the considered spin structure are known,
and we show that, for > 0, these conditions can never be fulfilled, implying that there
cannot be any solutions to the Einstein—Dirac system on the hypersu(rM%eht) for any

t > 0 and any curvé™, seeProposition 15Nevertheless, such solutions can be constructed
explicitly with respectto the trivial spin structure in case that 0, the manifolds considered

then being no longer complete. As remarked above, the Eguchi—-Hanson metric is self-dual
and, due to this, there is a parallel spinor on Eguchi-Hanson space. By restricting this
spinor to the hypersurface!a!,% c T*PY(C) we show inProposition 17%hat there exists a
T-Killing spinor on Mfl if and only if Mfl is a minimal surface. The spectrum of the Dirac
operatorD is studied inSection 8 There we show, by estimating the Rayleigh quotient
from above and using again the min—max principle, that the infimum of the spectrDf of

on (Mfl, hy) becomes arbitrarily small,

inf o (D?) < 8,

whered > 0 andr" is a closed curve, s@deorem 4+ > 0 being arbitrary; here the involved

spin structure is again the trivial one. In this case it also follows thab@D), by explicit
construction of an approximating sequence. In casefthita circle inC with center at

the origin, an isometric§* x S1)-action is given and th&2-kernel of the Dirac operator

and of its closure decompose into the unitary representations of this action according to
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the spectral decomposition of the corresponding generatari, and with respect to the
trivial spin structure one obtains

KerLz(Dl(Mla_\F)) = ﬁ:—?—Z,...HO ® Hg,

while onM?3 the L2-kernels of the Dirac operator and its closure turn out to be trivial. Thus,

in this case, G oy D). SinceM? andM3 - are isometric for everyt € U(2), statements
for a particular curve i€ U {oo} can be generalized to curves that arise from it by Mdbius
transforms.

2. The Eguchi-Hanson spacéT*P1(C), g;)

Let G be afinite non-trivial subgroup of &) that acts freely oi£™ \ {0}. ThenC" /G
carries an isolated quotient singularity at zero and any resoldfibnt) of C"/G is a
non-compact complex manifold. A Kéhler metgoon M is said to beasymptoticto the
Euclidean metrid: on C" /G if there is a smooth surjective map: M — C™/G such
that £ ~1(0) is a connected, simply connected, finite union of compact submanifolts of
and f induces a diffeomorphismi /£ ~1(0) ~ (C”/{0})/G. Under this diffeomorphism
f«(g) should satisfy

f@) =h+007%,  Vflg)=007>,  Vifig) =00"° 1)

for larger, wherer is the distance from the origin andthe flat connection i€ /G. Such

a metric is called a\LE metric Notice that the topological type of the end is given by a
quotient of the Euclidean space. In the following we will mainly be concerned with the case
ofm = 2.

In [20], Schoen and Yau proved that a complete asymptotically Euclidean four-manifold
whose Riccitensor vanishesis necessarily flat. Nevertheless, a similar statement for Ricci-flat
ALE Kéhler metrics does not hold, since, as mentioned, the topology of the end differs from
the topology of Euclidean space. An important class of Kéahler metrics which give rise to
Ricci-flat ALE spaces is given by the so-called hyper-Kahler structures. In the case of an
oriented four-dimensional smooth manifatda hyper-Kahler structure is a metric whose
holonomy is contained in S(@2). A manifold with such a structure is Ricci-flat and self-dual,
and its metric is Kéhler with respect to each of the three anticommuting complex structures.
Alternatively, a hyper-Kahler structure ahmay be defined to be a triple of smooth, closed
2-formsoy, o2, 03 on X that can be represented locally according to

or=ILANIlg+12Al3, o2 =11 NIz — 12 Aly, o3 =11 Al +1I3Aly, (2)

where(l1, ..., l4) is alocal oriented frame of 1-forms dh The systematic construction of
ALE metrics with holonomy SIP) as hyper-Kahler quotients was initiated by Hitcfia]

and carried over by Kronheimfir5,16], who studied the spac€%/ G for general polyhedra
groupsG C SU(2) and showed the existence of hyper-Kahler metrics on the resolution
M for the considered groups, giving a complete classification. For cyclic groups these
metrics are explicitly known. More recently, ALE metrics with holonomy SU(2), SU(3)
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and SU(4) have become relevant for the construction of compact 7- and 8-manifolds with
holonomyG3 and Spin(7), and we refer the reader to the work of J§26¢

The first example of a hyper-Kahler ALE four-manifold was found by Eguchi and Hanson
[4]. We will now briefly proceed to describe its construction. ket 2 andG = Z; and
consider the mapping

& C% - 3, D(z1,22) = (z%, zg, 2122).
The image ofC2 underd is
X =Im® = {(wy, w2, w3) € Cc3: wiw2 = w%},

and® induces a bijectio : C2/{+1} — X so thatX becomes analytically equivalent to
C?/{£1}. The canonical bundle ov&(C),

H:={(l,v) ePC)xC%:vel},

can be described explicitly as follows. If one introduces the homogeneous coordinates [
Blin PL(C), then the total spacH consists of all equivalence classes of triplesf, ]
with respect to the equivalence relati@n 8, v) ~ (Aa, AB, y/A), whereA € C*, i.e.

H={(B,y) e (C3\{0}) xC}/ ~.

The one-dimensional complex tangential buril®-(C) is biholomorphic to the square of
the dual of the canonical bundl&g]

TPYC) = H* ® H*,
from which one obtains, for the cotangential bun@llé?(C), the description
T*PHC) = H? = {(@, B, ) € (C*\ {0}) x C}/ ~1,

with the equivalence relatiotw, B, ¥) ~1 (A, AB, y/A?). Notice thatH?2 is simply
connected. We define now the mapping

n:H* = X, 7w« B,y = @y, By, aBy).

The preimage of the poin®, 0, 0) underx is the zero section of the bundié2. Away
from this setr : H2\ P1(C) — X \ {(0, 0, 0)} is bijective, and henceH?, =) represents
a resolution of the singularity af2/{41} at zero. Summing up one obtains the diagram

C?/ {£1} =

where the mapping is given by the formulary ([«, 8, y]) = [a/¥, B/¥]. The closed
holomorphic 2-form d; A dzo and the functioniy = |z1|2 + |z2|% on C? are invariant
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under reflections at the origin, descend(®/{+1} and, thus, lift to forms orH 2, which
we will denote by d; A dzz anduj as well.

We come now to the description of the Eguchi—-Hanson metric. Follojiriy we con-
sider, on the complex manifolt 2, the family of real-valued functiong depending on the
parameter,

u
fii=Ju2+*+12log———, >0
JuZ+ 14412

Here the functioni; : H? — R is explicitly given byui([a, 8, y]) = (la|® + |81D)|y],
from which it follows that, away from the exceptional curve, i.e., the zero seatipis, a
smooth function, and the same holds for For: > 0 the associated form

wr =100 f; € EVY(H?)

is regular even in the exceptional curve and thus defines a Kéhler forifPoRor using
homogeneous coordinates we can define a complex analytic structuié as follows.
LetUy = {[ar, B, ¥] : @ # O}, Ug = {[e, B, ¥] : B # O} be open subsets iH2 and define
the homeomorphisms

hy 1 Uy — C?, [a,B,y] = |:1, E yaz] — (é ya2> ,
o o

hg Uy — C% [ B.y]= [g’ L Vﬂz} > <g’ 7/,32>-
B p
Sincehy o hgl S hg(Uy NUB) = ha(Uy N Up) is a biholomorphic mapping, this gives
a complex analytic structure 2. We can therefore, choose the functighsndy as
local coordinates iit/,, by settingx equal to 1, so that : 74 (H?) — £rT19 (H?) and
3 : EPD(HZ) - £PatD(H2) are given by
0 d - o - 0
0 =—dB+ —dy, d=—ds+—dy
ot ay B Y
onU,. The regularity ot for 7 > 0 then follows by noting that the derivatives ffwith
respect toy, 8, y ands become regular (note thai = (1 + 88)+/yy). For example, in
C, one has

- 2184212774+ (22 +72)V1A + 2
23 (/2241442 log — _ 2 ATA @AV R L e
Vz|24t4 + 12 4(t4 + 72) (12 + V1F + 72)?

In case that = 0 on hasfy = u1, andwg becomes degenerate along the zero section. On
H? the Kahler formw, induces a Riemannian metric through the formula

g(X,Y) = w(X,JY), X,Y e XH?,

whereJ denotes the complex structure BP. For: # 0(H?2, g;) becomes a complete
Riemannian manifold.
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The complex manifold/* := H2 \ P1(C) is an open dense subsetif, so it suffices
for the study of the geometric propertiesif to considew; as well as the other relevant
geometric objects just om*. Further, sincer; mapsM* bijectively ontoC? \ {0}/{%1},
w; can be explicitly computed o* with respect to the coordinates, z2. Foru; =
7171 + 2272 € EXO(R?%) as a function o2 one has therefore

d d
dis= ¥ (52 di+ 5 d) e 89 0 24,
i=12 » % 9

dui = z10z1 + 22072, du1 = Z1dz1 + Z2dzo,
see, e.g[22], which yieldsd f; = < u? + t4/u1> duq and thus

4
. t _ _
W = —i———{|z1/°dz1 A dZ1 + |z2% dz2 A dZ2

2 2 4
ul,/ul—i—t
2 4
N

+2z172dz2 A dz1 + Z1z2dz1 A dzZo} + i - {dz1 A dz1 + dzo A dZ2}.
1

The form d; A dz; is expressed with respect to the coordinaties x1+iy1, z2 = x2+iy2
by
dz; A de =dx; A dx]‘ +dy; A dyj —i(dx; A dyj +dxj Ady),

and the action of is given byJ(dy,) = d,,, J(dy,) = —d,,. Computation of; restricted
to M* then gives

G1 0 -Gs4 -Gs

0 G1 Gz -Gy

8= -6, 63 G, o |
—G3 -Gy 0 G
where
G1=G — H(x? +y?), Gy=G — H(x2+ ),
G3 = H(x1y2 — y1x2), G4 = H(x1x2 + y1y2),

andG, H : M* — R are the smooth functions

_ 2‘/Mi+t4 2t4

G=——m, H=—"78#¥.
u1 u%,/u%—l—t“

For later use we define the smooth function

K :M* > R, K =G —Hu; = 4G~ L.
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From this it becomes evident thgt satisfies conditior{1). One further computes the
volume form d* = w; A w; to be V(dz1 A dZ1 A dzo A dzp), whereV = 2. By the
general theory of Kéhler manifold$3] the Ricci-form Ric= i3 log V then vanishes and it
follows immediately that the Riemannian curvature tensor with respect to the decomposition
A2(M*) = A2 (M%) @ A2 (M%) is given by

X W, 0 0 B* S W, 0
_( 0 W)+<B o> 12‘( 0 o)’
whereW_ and W, are the negative and positive part of the Weyl tensors, respectiely,
is the trace-free part of the Ricci tensor ahdenotes the scalar curvature. The condition
B = 0 implies that(H?, g,) is an Einstein space and the vanishingf means that
(H?, g;) is self-dual; the latter is equivalent to the statement that the buxfdi@s*) is flat
which in turn implies that there exist three parallel formsxdn(M#). These forms can be
chosen a&, and the two closed 2-forms, o3 defined byo, + io3 = dz1 A dzo. One can
show that the tripl€w1, o2, 03) may locally be written in the fornfl) and thus forms a
hyper-Kahler structure o and hence o2

We consider now the projection

p: H?> = T*PYC) — PYC) = C U {o0} = §2,

which is explicitly given by &, B8, y] — [« : 8] — «/B. The functioru; is invariant under
the standard action of (2) on C2 resp.C? \ {0}/{£1} ~ M*, which is given by its matrix
representation. On the other hand2Vacts as a group of holomorphic transformations on
C U {00} by the so-called/i6bius transform

a b _az+b
<c d)z_cz+d’
resp. onP(C) by
<i Z)[a:ﬁ]:[aa—i—bﬁ:ca—i—dﬁ].

Taking the mapping := pon; *: C?\{0}/{£1} — PX(C), whichis given byp[z1, z2] =
[z1 : z2], one therefore sees that

(4 5)iaat) = (¢ ) tenzal

which means that the diagram
H?\P(C) —— €\ {0}/ {#1)
P _

P!(C)
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is compatible with the group action of(®). Since the se€? \ {0}/{+1} is mapped by
U(2) onto itself, it follows that, by extending the action of2) to H?, the exceptional
curve in H? must be mapped onto itself, too. The projectjpn H?> — PL(C) is therefore
also compatible with the (2)-action. Sincex; vanishes on the zero section, it becomes
U(2)-invariant on H2. The Kahler metriaw, and the Riemannian metrig;, which are
defined by means of the functian, are thus also invariant under®) in H2.

3. Hypersurfaces in (*P1(C), g;) and their inner geometry

We now introduce certain hypersurfacesﬂﬁPl(C) and to this end consider for any
curvel'(s) = u(s) +iv(s) = r(s) €97 in C U {oo} its preimage

ME=p NI =([I'G), Lyl e H>:y €T},

obtaining a real three-dimensional hypersurfac faLet 4, be the Riemannian metric on
M}’l induced byg,. The three-manifold/lfi’ is open and in case of a closed curve its end is
of topological typel'? x (0, oo)/{#1}, whereT? = S x $tis the two-dimensional torus.
The hypersurfaceri are asymptotically flat, but no ALE spaces, since their end is not
modeled on the end d@&3/G. Note thatM13- is a one-dimensional complex vector bundle
overrl.

Sincep : H? — P1(C) is compatible with the action of (2), and since;, and hencé,
are invariant under this action/3 is mapped isometrically ontt/3 ., whereA e U(2).
Remember that under Mébius transforms generalized circl€are mapped again into
generalized circles.

We will now compute the inner geometry of the hypersurfdﬂésand assume from now
on thatl"(s) is parameterized by arc length. Using the projecpiaone obtains a parame-
terization¥ : [0, L;) x (0, 00) x [0, 27) — rrl(MI:’: N M%), (s, 0, ¥) = [x1, ¥1, x2, ¥2]
of the hypersurfaceM% outside the zero section

M3 0 M* >~ {[o(u(s) cosp — v(s) SiNp)o(v(s) COSp 4 u(s) Sing), o oSy, o sing]},

wheres is the length parameter df and,/y = ¢ €¥ e C* denotes the parameter of the
fiber overr". All the following calculations will be performed iM}i N M*, which is dense
in Mfi’. The vector fields orM% induced by the parameterizatignread

9y = W, (35) = (01t cOSp — V'sing), o(¥ cosy + i sing), 0, 0),
9 = Wi (9g) = (1 COSp — v SiNg, v COSY + 1 SiNg, COSy, SiNg),
9y = ¥4 (9,) = (—o(using + vcosy), —o(vsing — u CoSp), —o Sing, ¢ COSp).

Further, one has
1P ()% = 0%+ 02 = i+ r%p2 = 1,

sinces is the arc length parameter bf Note also thati + v = ri- anduv — vit = r2¢r.
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Moreover, outside the zero section the following identities hold:

@f+yDps =0 (YD =05 (2= yax2)s = —vo’,
(¥22 + y1¥2) p3 = uo?,

anduy;ys = 0%(r? + 1). Let h, be the Riemannian metric a3 induced byg,. In the

case of a closed cunye the hypersurfaceM,%, h;) is a complete Riemannian manifold for
t # 0. Making use of the above relations one obtains the following proposition.

Proposition 1. On M% N M*#, the coefficients of the induced Riemannian métriavith
respect to the local coordinate franfé;, d,, d,,} are given by

hi1= (K + Ho®0?  hiz=rioK,  hiz=g¢rr2o’K, hxp=(?+ 1K,
hog = 0, has = (r> + 1)0°K.

The functionk is given onM3 N M* by the formula

. 292(1'2 +1)
VAT + D2+

and the function&; and H by

2/%2+ 02 +4 2t
%7 +1 I EN L R Ve

In order to compute the relevant geometric quantitieﬂéfit turns out to be convenient
to work within the framework of Cartan. For this purpose we determine an orthonormal
frame with respect ta, by the ansatz
1 1
Y1 = ——30,, Yo = ——30,, Y3 = Dd; + Ed, + Fd,. (3a)
g iz s o (7
The vector fieldy; andY» are normalized to length 1; singgs = 0, they are orthogonal to
each other. From the conditidn(Y1, Y3) = h,(Y2, Y3) = O together withi, (Y3, Y3) = 1
one obtains

G .=

h
D=hpy, E=-hpy, F=--21. (3b)

o
Here we have introduced the functiah:= o./(deth;)~1 and one computes
896(r2 + 1)2
>0
Vo2 + 12+ 14

The vector fieldgY1, Y, Y3} are defined oeri N M* and outside the exceptional curve
do represent a global section in the frame bundlMﬁf. Note that sincé 2 is positive,D

deth, = hao(h11haz — h2,0% — h25) = 42 + 1)K o* =
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is always positive. The local base of 1-forfast, w?, »3} dual to the orthonormal frame is
then given by

E F 1
™ =+/h22 (dQ— Bds), w? = /h33 <dg0— Bds), w® = Bds, 4)

and the connection forms; = h,(VY;, ;) of the Levi-Civita connectioiv on Mf: as well

as the components of the Riemannian curvature teihlﬁpt Ryiij are uniquely determined
by Cartan’s structure equations

3
da)i = Zwij A\ a)j, (5)

dwjj = Z Wik N\ WK + = Z Rk“a) NS (6)
k =1

We determine now the connection forms of the considered hypersurfaces.

Proposition 2. With respect to the orthonormal franga) and (3b), the formswj; of the
Levi-Civita connection 0|M13_ N M* are given by

1 /1 1 2 0 F
w12= (E + E(IogK),g> o= (1+ E(IogK),g) (dw - Bds> :

1 3
w13 = ———=(log D) ,w° =

Vh22 D«/_

Proof. Using the orthonormal framgry, Y», Y3} on M2 N M#, the components of the
Levi-Civita connection can be obtained via the formulas

———=(log D) , ds, w23 = 0.

2ht(VY,Yjs Yk) = hl([Ylv Y/]9 Yk) - hf([Y]7 Yk]9 Yl) +hl([Yk9 Yl]v Y/), (7)
resulting from the Koszul formula. A direct computation of the commutators yields
(Y. Vo] = 1 (1+1K )Y
17 2 - ,\/h_zz 2 K 27

E E
Y1,Ysl=(E, + — (2riK 24 DK 24y DK, — =D, )Y
[Y1, Y3] (,g+2h22( rrK + (r°+1) ,s)+2h22(r + DK, ) ,Q) 1

+o | F —FD Y: D’QY
o ,0 E 0 2+ — I3,

D .
[Yo, Y3] = [ —0%QriK + (r° + DK ) + —(r2 + 1) (20K + QZK,Q) Y
2h33 2h33

Now, a short calculation gives
(r> + DK 5 = riok ,, (8)
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by which one further calculates
E h
Eo—=Dy,=53(-202+ 1)K, —riK —rioK,) = —SriK,
e~ b Hiag . .

D@riK + (2 + DK ) + EG? + DK , = 20 + 1)riK?,
which shows that the first coefficient df{, Y3] vanishes. Similarly, it can be seen that the
second coefficient is also zero, since
F,— ED’Q = —h13,gi22 — h13 (—2%2 + %E’Q>
D Y o o

1
hiz3—=>Y—————
+ 13Q2 2+ DKX

PP+ DK, Z+KZ,)
1 1 1

=X (—r2¢p(291( +0°K o) = + 2%y <—1< + —K,Q>> =0,
o 0 2

and by using8) again one sees that the commutatéy, [Y3] vanishes completely. I&g. (7)
therefore only the terms

1 11 1
hi([Y2, 1], Y2)=—— <—+—(|09K), ) . h([Y3,Y1],Y3) = ———=(og D) ,,
' Vhao \o 2 ¢ ' Vh22 ¢
are non-trivial, and for the formsy; this gives the stated expressions. O

Summing up, one obtains that the structeggations (5yead

do! = w12 A 0% + w13 A @° =0,

0® = w1 At + wp A = 1 <E+}(IogK),g>a)l/\a)2,
Vhao \o 2
1
dow’® = w31 A 0¥ + wzp A w? = — (log D), ol A @B
v h22 ¢

We are now able to compute the components of the Riemannian curvature tensor as well
as the Ricci tensor and the scalar curvature of the hyperSlM%ce

Proposition 3. With respect to the sectiofza)and(3b), the components of the Riemannian
curvature tensor R of the hypersurfac(aatﬁ, h;) are given by

1 /1
Ri210= Dios (5(|09 K)o + (log Kl@@) ;
1 /2
Ro323= —% (5 + (log K),,Q) (log D) o,
1
Ri313= 5, —(=2(0g D) 4 + (10§ K),(l0g D)., + 2(l0g D)%),

while R1213, R2312and Rp313Vvanish
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Proof. We calculate the components Bfby using the structurequations (6pf the hy-
persurfaceM%. By Proposition 2the 2-formswi3 A w32 andwi2 A w23 vanish and

1 /1 1
w1 Awiz3= — =4 Z(logK) , ) (log D) p0? A @>.
h22 \o 2

Further, the differentials«j of the connection forms are given by
—(° e
o = (2(|og K),Q>,Q do A dg + (2(|og K),Q)J ds A d
F 4
— <B (1+ E(Iog K),Q)>’Q do A ds

1 0 1 4
= =(logK —(logK ——
(Z(Og ),Q+2(Og ),QQ) hzzgw A
1 0 E 0 D 5 3
—((Zaogk € logk — +%00gk),,— ,
(G000 Go0000) i+ Ganie = o e

(log D),Q> do A ds
.0

om (2
D+/h22
= (—i(log D) oo + i(Iog K)(logD) , + i(IogD)2 ) ol A @°,
ho2 ’ 2h3) ’ T hp e
dwo3 =0,

and one obtains the stated formulas for the comporigpt®f the curvature tensor by using
(6). Notice that

((log K)o +0(109K) 40)E + 0(I0gK) 50D
orr
r2+1

= ((log K) o +o(10gK) po) (—rioK X)+o ( (log K),g> r’+ DK ¥ =0,

,Q

implying thatR2312 vanishes. O

Theorem 1. The componentR;; of the Ricci tensoRic of the Riemanniag’ > -manifolds
(M2, h;) are given with respect to the orthonormal fraif@a)and (3b) by

2t4 0 0
Ric = P 1)2 TR 2% — 0%(r? + 1)? 0 :
0 0 —4t* — 0%(r? + 1)?
and the scalar curvature is
o*(r?+1?

S = Rut ezt R = ~aga 1z g
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Proof. One computes

(logk) , = 2
I e = AT T2 e
214 8r4 20,2 1 2
(l0g K). gy = — t 8 (r 4+ 1 ’
* ©* 2+ 12+ 1%0% (0% 2+ D2 +1%)?

2

1 1
logX), == — =—-=—Z(logk
( Og ),Q Q (Q4(7'2 + 1)2 + t4)Q 2( Og ),Q,

1
(logD),, = (logK) o + (log X) , = o + E(Iog K).o-

obtaining thus, with the previous proposition, for the compon@&gts= > "/ Rikj of the

Ricci tensor that

1 1 1
R11= TZZ [__(IOQ K),Q - (IOg K),.Q.Q - (|09 K),Q (_E + E(IOg K),Q)

-2 i—}(lo K) +}(Io K)2 ) +2 i+}(Io K)
02 g0 et 4 l0gR), 02 12109 e

_ 1 —(logK)? +21(I0 K)
- 2h22 g ,0 g ,0 )

Rop— 1
22—2h22

_ 1

_ 2(
[ (IogK>g<—5+ (IogK)Q) (%—Edogmgﬁ(loglf)z)

2 oc o T4 @

2
1 11

+2 <? + Z(log K),Qg) - 5(2 +0(0gK) o) <—5 + 5(log Kl@)}
1

1
=209 K) o= (10g K) oo+ 2(2+Q(|OgK) 9)( 1+g(logK),Q)}

2
(I0g K).o ~ (10g K) 0 = 5 + é(Iog K)?g>,

N‘
=

N
fbll—\

‘ -

Ra3z=
33 2

(“"g’“ oo — 5009 K )%, + 2 10g ), — 32) ,
2h ; 0 o

the remaining coefficients being equal to zero. In the same way as the components of the
Riemannian curvature tensor turn out to be bounded when 0, the components of Ric

and thusS stay bounded, too. Explicitly, one has
1 a2 g2, a1

R11= — 1 % —
. QZ(VZ-i-1)2(Q4(V2+1)2+t4)3/2( 2@ "+ D741 Qz)

4

t
IR

432
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1

Rop=
22 20202 + 1)2(04(r2 + 1)2 + 14)372
4 8 4
t t t
x(-7@%ﬂ+1yuﬁ+-§+—ﬂ&vz+nz+ﬂy+m%%ﬂ+1f
0 o Q
1 8 2,14, 8,042 14 214 — 0*(r? + 1)?
—— 1 °+2 1 = ,
Qz(g "+ D7+ 17+ 2070+ D) 20042+ 12 1 1432
1
R3z=
33 202(r2 + 1)2(0*(r2 + 1)2 1 14)3/2
4 8
t t
><("7@%ﬂ+¢ﬂ+¢%—4ﬁfaz+nz——§
Q Q
3 4,2 2, .4 1 g > 4, .8 4,2 2.4
+?(Q F 4+ D"+t )—?(Q rF“+D"+ 1%+ 207"+ Dt7)
At =042+ 1)2
C 20042 + 12 + 1432
showing that the divergent terms cancel out and the assertion follows. a

Hence, the scalar curvatuseis negative and tends agd2(r2 + 1) to zero agp andr
go to infinity. Fort # 0 all components of the Riemannian and Ricci tensor as wedl as
remain regular a = 0 and are therefore defined everywhere on the Riemannian manifolds
M. Fort = 0, the scalar curvature degenerates &t 0 in concordance with the fact that
the hypersurfaceMﬁ are no longer complete in this case.

4. The second fundamental form of the hypersurfaceMI%

We proceed now studying the second fundamental form of the hypersuMéces order

to do so, we need the Levi-Civita connectio” of the Eguchi-Hanson spa¢#?, g;).
It can be obtained from the Koszul formula, which reads for commuting vector fields as
follows:

2gz(V;I?2Y, Z2) =X(g(Y,Z2) +Y(g:(Y, Z)) = Z(g:(X, Y)).

In the following we will denote the coordinates, y1, x2, y2 of the dense complex manifold
M* ¢ H? by x1, x2, x3, x4 SO that the components &% on M are given by

1 /0gik dgk  0gij
Fijk:_<_'+_1__” , I“ijkzgkll"i“. 9)

2\ 9x; 0x; 0xy
Because of the symmetry
gk (xm) = ggr(xm),  k :=k+2 mod 4 (10)

of the covariant coefficients of the metric one obtains, for the Christoffel symbols, the
relations

FDam(xn) = T (x7). (11)
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Now the contravariant coefficientd of g; are given by the matrix
Go 0 Gs Gs3
1 1 0 Gy, -Gz Ga

¥ T V@t |Gs =G G 0|
Gz Gy 0 G1

where deg, = (G1G2 — G5 — G3)? = 16. Further, the derivatives of the functiofisand
H are

G,xi = —ZXI'H, H,x,' = —le'l,
with I := 26%3Bu?+1%) /udw?+14)%/2. A straightforward calculation yields the Christoffel
symbols of the first kind.

Proposition 4. The Christoffel symbols of the first kind of the Eguchi-Hanson space
(H?, g;) are given onM* by

Mu=-x1H — 12 +x3),  DNio=x22H — 1(x] +x3)),
iz = 21 (x1x2x4 + %xs(xf — x3)), Iia= =21 (x1x2x3 + %x4(x§ —x9)),
a1 = —x3(H — 1 (x2 + x?)), INzo = x4(H — 1(x% + x3)),

the remaining ones can be obtained from these by taking into account the synifpetry
Tik as well as the relationgl 1) together with the additional symmetries

I = —T1y, T'y4i = — 133, I3 = g, T4 = —Ig

and
o = Nag-1, g = Inzi-1), 34 = I'33;—1) for ieven
g = —Ti+), Mg = —I3+1), I34 = —I33;41) for iodd

The Christoffel symbols of the second kind are derived from these formulas as indicated
in (9). By the symmetries of the Levi-Civita connectig” it is sufficient to compute only
six of them explicitly. So one has

rfi=—1xG@H — 13 +x3) + TH[x1(x3 + xHH — 1(x2 + x2))
+21[(x1x3 + x2x4) (X1%2%4 + 3x3(xF — x3))
—(x1x4 — x2x3) (x1x2x3 + 3x4(x5 — x2))]]
=x1[—3GQRH — I (x +x3)) + SH?(x5 + x§) + THI[—(xf + x5) (x5 + x)
+(3 + 2 (F — x3) + 205F +252)]] = A1,

where we have introduced, = (1/2)H2(x3 + x2) — (1/HGH — 1(x? + x2)). In a
similar way, one obtains

2
Fll = _x2A1.
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Further one checks that
Y =31Grs+ YH[-isGd +x3) — 2H — 1(x2 +x5))
x [x1(x1x3 + x2x4) + x2(x1X4 — Xx2x3)]]
=1Griz— %HZ(ZX1X2X4 + x3(x% — x2))
+ L H[~ a2 + x3) + 1 (x? + x2) (2v1xpxa + x3(xF — x3))]
= 3C (x1xoxg + 3x3(xf — x3)),
as well as
Ity = —3C(r1xoxs + 3x4(x5 — x2)),
whereC = (IG — 2H?). Finally, one calculates
Ifs=31Ga+ FH[- N335 +x3) + (H — [(x5 +x3)
X [—x1(x2x4 + x1x3) + x2(x1x4 — x2x3)]]
=—2x3[G(H — 1(x2 + x2)) + H*(—x§ — xZ + x{ + x3)]
1 2, 2,2, .2 2, 2,2 21 _
+zH|[X3(X1 + xz)(x3 +x4) - X3(x3 + x4)(x1 +X2)] = —x3B1,
F]_23 =x4B1

with By given by By = (1/H[G(H — I (x? + x3)) + H?(x? + x3 — x2 — x2)]. Taking into
account the relationd0) and (11)ne thus obtains that thg’k are given as follows.

Proposition 5. The componentEjﬁ of the Levi-Civita connection of the Eguchi—-Hanson
space(H?, g,) are given onM* by

rj =xiA, I = —x2A1, rg = x3Az, I5h = —xaAa,
I = 3C(wxaxa + 5x3(xf —x3), Iy = —3C(xixaxs + 3xa(x5 — x9)),
F313 = %C(szs)m + %xﬂx% — xf)), F3?3 = —%C(xlxgm + %xz(xﬁ — x%)),
I'fy = —x3B1, ' = x4By, F133 = —x1B2, Iy = x2By,

where

A= 1H?G3 +x)) — 1GQH — 1(:xF + x3)),
By = [G(H — I(x? + x3)) + H*(x% + x5 — x§ — xD)],
A= 1H?(x2 +x3) — 1GH — 1(x3 +x2)),
By = [G(H — 1(x3 +xP) + H2 (3 + x5 — xZ — xD)],

andC = (IG—2H?). All remainingl“jf( can be obtained from the above by usiﬁ@ = I“J,"
as well as the relations

i i i i i i i i
FZZ__Fll’ F44__F33’ F23_F14’ F24__F13’
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and

N

i _ p~@=1) i _ - i _ -1
=Ty 7, Ijy=Ty ", I3y=1Tg;

for i even
ri,=-ri™, rj,= -, ri,=—r&™ for iodd

In order to describe the outer geometry of the hypersurfal:%swe first determine a
field of unit normal vectorsyv : M3 — (TM3.)+ on M3. Up to orientation such a field is
given by the conditions

gt(Y[,N):O, i:1,2,3, gt(N,N):l,
which are equivalent to the system of equations

N1(ucosyp — vsing)K + Na(v cosy + using)K + N3K cosp + N4K sing = 0,
—N1(using + vcosp)K — Na(vsing — ucosp)K — N3K sing + N4K cosp = 0,
{N1(1t cosp — v sing) + N2(v cosy + u Sing)} (K + HQZ) — N3(cosp(vv + uun)
+sing(iv — vu))Ho? — Na(Sing(vo + uir) — cosg(iiv — vu))Ho? = 0,
(N2 + N3)(K + Ho?) + (N2 + N2)(K + Ho%?) + 2(N4N1 — NaN2)vo?H
—2(N3N1 + NaNo)uo?H = 0.
By solving these equations with respect to the compon®pisf the unit normal vectors

one obtains the following proposition.

Proposition 6. On M;°l N M* a field of unit normal vectors is given by

—_ — (w1, —w2, —rwz, rwy),

where the functions); are
w1 = ¥ COSp + u Sing, w2 = 1 COSy — v Sing,
w3 = F SiNg + r¢r cosy, w4 = F COSp — ror Sing.
We note thatw, andw; can be viewed as the real and imaginary partd ¢f) €,
w4 andws as the real and imaginary parts Bfs) €Y e'%I" respectively. By construction

the hypersurfaceMﬁ are embedded i#/?. If N denotes the field of unit normal vectors
determined above, the second fundamental for@fis defined by

I xM3) x M3y —> FM3), (X, Y) =g (X, VE'N). (12)

It is symmetric and bilinear. In the following we will write the coordinates, ¢ as
n1, N2, n3, and denote the components of Il with respect to the induced frame of coor-

dinate vector fields by jl. For shortness, we will simply writ& for v in the remaining
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of this section. Explicitly,
Va,, N(p) = (3y; Ni(p) + Ni(p) Vs, )31,
Va,, 3 |p = dve(3y,) (P) T ()dx,|p, (13)

wherep € M3 N M4 On M3 N M* the coordinatess, x2, x3, x4 can be expressed by the
coordinates, ¢, o according to

X1 = @41, X2 = 062, X3 = 0 COSp, X4 = oSing,

where we have defined
{1 = u CcoSy — v Sing, {2 = v COSY + u SiNg.

Thus one obtains that (Mfi N M* the polynomials appearing in the expressions for the

ij( are given by
[x1x2x4 + x3(x% — xg)]lMg = 0%[—wsing + (u? — v?)J cosy],

[x1x2x3 + 2xa(x3 — xf)]lM; = 03w cosp + (u? — v¥) 3 singl,
[xox3xs + $x1(x3 — x2)] I3 = 30%[vsing + u cosg],
[x1xaxs + x2(x5 — Xyz,)]lMg = 30°[using — v cosy].

We compute now the covariant derivati\)é% N. To this end we first note the relations
w3 COSY — w4SINY =rgr, w4qCOSP+w3SiNg =F, w2COSY + w1 SiNg = i,
w1 COSY — wp SiNg = v, {1wz + w1l = rr, fwi — Lowp = r?gr.  (14)

Because of
ri =r(F COSpr — ror Singr) =ru —roru,
rv =rFSingr + ror CoSpr) = rv + roru,

one has further

rwy = CoSp(Fv + rg,u) + Sinp(Fu — rgrv) = Uwz + vwa, (15a)

rwp = COSp(Fu — r¢,v) — SiN(Fv 4+ reru) = —vws + Uwa, (15b)
and thus

rwsz = COSpr (Uws + vwyg) — SiNgr(—vws + Uwyg) = Uwi — vwa, (15¢)

rwg = Singr (Uwsz + vwg) + COSer (—vws + Uwg) = wiv + wal. (15d)

Proposition 7.

4
Vo, N =) (Niy + @FNi +r¢rNip)dy, = Ns+ @GN +rgri ),
i=1

where® = —(1/4)HK?r.
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Proof. By using the symmetries of the Christoffel symbﬁ]jé one has

4 4
VaN=)_ [Ni,s + ) Ni(Ifowz + inkal)j| Oy,
i=1 k=1

4
= [Nis + 0T} (N1wz — Naw) + oI'{5(Nawz + Nyws)
i=

+ 0T {3(N3w2 — Naw1) + 0T 4(Naw2 + N3w1)]dy,

K
|:N, stos ,/ (2Fllw1w2 + My (w? — wd)

+Igr (—wawz — waw1) + I yr (wawz — wswl))} Oy

Mh

The first component o¥y N reads

dr1(Va N) = Noy + 2] g2
x1(V; = =
1 LoV

since by the relation§l4) one has

21"111w1w2 + I"llz(wi - w%)
= A10(201w1wy + o(wk — w5))
= Aro[wi(S1w2 + w1l2) + wa(S1w1 — L2w2)]
= Ajor(Frwi+rorwy),
1"113r(—w3w2 — waw1) + F114r(w4w2 — w3w1)
= Bior[cosg(waw3z + wiwa) — Sing(wawz — waws)]
= Bior[w2(w3COSp — w4 SiNg) + w1(wq COSY + w3 Sing)]

= Bior(wargr + wir).

The second component is given by

dx2(Vy N) = N: +1,/ K2
xZ 85 - Z,S 2 }’2—‘[—1

as can be verified by an analogous calculation. As far as the third component is concerned,
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using also the relationd 5a)—(15d)one computes

21"131wlw2 + Ff’z(wi — w%)

I/tz—l)z

1 3 -
= EQ C||—-uvsing +

cow) 2wiw2

2 2
u-—v . 2 2
+ (UU Cosyp + 5 Sln(p> (wy — w2)i|

1 . )
= EQSC Uv(w1(—w2 SiNg + w1 COSp) + wa(—w1 SiNg — w2 COSY))

M2—U2

2

+ (w1(w2 €cOSY + wi SiNg) + w2(w1 COSY — w2 sin<p))]
150 . . u? — 2
= EQ C |uw(w1v — wou) +

13C[vw1(. o)+ 992 i o+ Y iy — P22 i 4 .)]
= = — (VU — Uv —(—Uuv vu — (Vv uu) — —uu VU
2° 2 2 2 2

(wiu + wzii)i|

1 3 2 . .
=40 Cl(vwy + Uuw2)r<¢r + (Uwy — vw2)rr]

_1— 32 . .
=20 C(rorws + rwa)
and

Ff’sr(—wng — waw1) + F134r(w4w2 — w3w1)
= Boor[—{1(—wow3 — wiwa) — {2(wawp — wawy)]
= Boor[wa(Cawz + Cow1) + wa(Crws — Lowp)] = Boor?(war + wargr),

so that

dx3(Vsy N) = N: +1‘/—K 22 12C+B (Fws + rorwg)
X = —_ r — 7 r .
3(Vay 3s T 5 r2+19 4Q 2 ) rw3 +rorws

In the same way one verifies for the fourth component that

dxa(Vy N) = N. +—1,/—K 22(L2c 4 p (—iwa + rerws)
x r rw. r w3).
4(Va, 4s T35\ 2 lQ 1.Q 2 4+ Trorws

The stated expression 8 N then follows by noting that the equalities
A1+ B = 3(H20%(r? + 1) — GH) = —3HK,
2C0”+ Bz = 3(G — 2H)0" + 3(G(H — 1) — H0*(* = 1))
=3H(G — He?(r* + 1) = ZHK

hold and that the derivativeg; , of the components of the normal vector with respeei to
are given by the component§ according to

N;y = N;_1 for ieven N;p = —N;y1 for iodd (16)
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thus finishing the proof. We remark that, siriég, = 0, one has thag; (N, Vy N) = 0 for
all vector fieldsY e X(M%), and a computation indeed shows that the normal par oy
vanishes. O

Proposition 8.

VggN =0.
Proof. One computes

4 4
Vo, N=Y_ [N,-,Q + Y Ne(Ifoa + Ty o + I cosp + I, Siﬂ(p):| 3y,

i=1 k=1

4
=Y [Nig + I'f3(N1¢1 — Nat2) + Ifp(Nat1 + N1£2)

i=1

+T{3(N3g1 — Nata + N1€OSp — N2Sing) + I'{4(Nat1 + N3l

+N2€oSp + Ny sing) + ig(N3cosp — Nasing)

+ 4 4(Nacosp + N3sing)]dy,.
Once again we calculate the component¥gfN separately. By using the symmetries of
the F”: and(14)—(15d) one obtains

IH(N181 — Nago) + ThH(Naz1 + N1go)

1K 1K )
=5 mAlg[Cl(wlél + w202) + a(—w2l1 + w1p)] = > r2—+1AlQr w1,

IL(N3g1 — Nago + N1€osg — Nasing) + Iy(Nat1 + N3tz + N2 cosg + N sing)

1/ K .
= —5,/ 5 B1o[ cosp(r (—w3t1 — wal?) + w1 COSY + w2 SiNg)
2V rée+1
X Sing(r(wal1 — w3t2) — w2 COSp + w1 Sing)]

1/ K _ .
=-3 mBlQ[wl + rw4(¢18iN@ — £2 COSp) — rw3 (&2 Sing + {1 CoSy)]

[ p—— —B w + wa(—v) —lTwau| = —— I? 1—) w1,

I5(N3cosg — Ny sing) + I'i(N4 cosg + N3sing)

_1/ K 3C[(vsin +ucos>( co sing)
=2\ 725770°C | (58in¢ + 5 cos¢ ) (—wscosy — wasing

+ (% sing — %COS@) (wgq COSY — w3 Sih(p)]

= é,/ r2+1rg C(—Uwsz — vwg) = 8V 2y 1r 0°Cuw1,
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and, moreover,

dx1(Vy N) = N +1,/—K (A1 + B)r? B+122C
X = 5 re— ~o°r w1.
1(Vg, Lot 5\ 20 (A1t 51 1+ 50 1

A similar calculation gives for the second component the expression

dx2(Vy N) = N +1,/ K (A1 + B)r? + B+122C
x = /0| — r —o°r wy.
2(Va, 20+ 5y 719 1 1 1+ 0 2

One calculates further

FE(N181 — N2&2) + TH(N2g1 + Nigo)

= C‘/ u Sin(p + U2 COS(p ( )
- - —Uv w é‘ + w ;‘

U2 — 12
+ (Uv coSyp + sin<p) (w281 + w1§2)]
- 93_C K uv (w1 (&1 SiN COSp) (g2sin CoSsp))
=2Vl v(wi(f18INg — {2 COSp) + w2 (42 SN + §1 COSp
U2 — 2
t— (w1(41€0Sp + L25iNg) + w2(L2 COSY — {1 Singo))j|

o°C K uv( +u )+u2_v2(u + )
= — —uv(—ovw w w vw
2 ‘/r2+1 1 2 > 1 2
3 2, .2
= (uw1— ==/ ———0%3Cuws,
2V zy1 2 Wwimvwd) =gy mmeCus

as well as

I'h(N3g1—Naga+N1CoSp — N2 sing) + I'y(Nag1 + Nagz + N2 Cosp + N1sing)

0B> K ,
=5 m[—él(r(—wsﬁ — w4$2) + w1 COSY + w2 SiNg)
— £2(r(wal1 — w3l2) — w2 COSp+wi SiNg)]
oB> K . . 2,2
=5 m[wl(—ﬁ COSp—{2Sing) + wa(—¢1 SiNp-+2 COS)+Hrwa(S1+4¢5)]

= —/ 55— (—uw vw r-w = = rr- — w3,
2 Vrzgp1 ETURR ) 213

I$5(N3cosp — Nysing) + I'sy(N4cosg + N3sing)
1

=5\ 2 n 1QrA2[cos<p(—w3 COSp — w4 SiNY) + SiNg(w4 COSY — w3 SiNg)]

1K
= = [ orAmuws,
2V 21972
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thus obtaining for the third component gf, N that

x3(Va,N) = N3, + > m@r —(A2+ B2)+ | B2+ 2° C)ro)ws.

Finally, by an analogous calculation one finds that the fourth component reads

X4(VagN)=N4,Q+§ P Az + By — 32+ZQC r< ) wa.

Since
Az+ Bz = 3H?0%r® — G(H — 1) + jG(H — 10°) — §H?0* (" + 1)
= —1H(G — Ho*(r* + 1)) = —1HK,
30%r%C + By = 3[G(H — 10%%) + H??(r* — D] + 50%r*(1G — 2H?) = JHK,
the desired statement follows by noting that, = (log K) ,N;/2 and
1(logK),, — $HKo(r? +1) = 0. O

It remains to compute the covariant derivativeNofvith respect td, .
Proposition 9.
4
Va,N =) ENiydy =EN,,
i=1
where& = 1 — (1/4)HKe?(r? + 1).
Proof. Again,

4 4
Va,N=Y_ [N,-,(p + Y Niel—etalfy + 001l — o singTy + o cost‘{k]} 3,
k=1

i=1
4 . .
=Y [Nig + 0lf1(=t2aN1 — &1N2) + 0T{5(=E2N2 + ¢1N1)
i=1

+QF1i3(—CZN3 — N1sing — ¢1N4 — N2 COSgp)

+ I40(—oNa + N1 COSg + £1N3 — Nasing)

+ 0I'35(—N3Sing — N4 COSp) + I'340(—NaSing + N3C0Sp)]d, .
By the symmetries of thFlij one has for odd that

dx;(Va,N) — Niy = —0(Ax;+1(VyoN) — Nit1,0)
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and one obtains for the first and third components

dx1(Vy, N) = N1, + 1 0’ (A1 + B)r® — ( B1+ }erzc wo,
v v 2Vr2+1 4

dx3(Vy, N) =N —I—l 2 (A2 + B2) + B~|—12C 2
= 54/ r|— - r .
x3(Va, 3¢t 5\ 219 2+ B2 2+ ;0 w4

In an analogous way one has foeven

dx;(Va,N) — Nip = 0(dxi—1(VyoN) — Ni—1,0),

the second and fourth components being given by

dx2(Vy N) = N +}—2(A+B)2—B+122c
x2(Vy,N) = N2y > r2+19 1 r 1 4Qr w1,
dxa(Vy, N) = N. +1,/—< 2y —(A2+ B2 + (B +1 2c)r?

= - - n w3,
xa(Va, 49 T3 r2+1QV 2+ B2 2+ 40 r 3

and the assertion follows. Again, one verifies thatv, Vs, N) = 0. O

We are now able to compute the second fundamental form of the hyperstace

Theorem 2. With respect to the coordinate frani&, 9,, d,) the components of the second
fundamental form of the Riemannixiﬁo-manifolds(Mﬁ, h;) are given by

Gt — vii) — 2Ho?(wv —vir) 0 K

n=2/_K 0 0 0
T 2Vr241

K 0 O

Proof. By Egs. (12) and (13andProposition 7one has

4

=" gj dx;(d) dx;(Va, N)=0[(N3,5+® (*N3 + r¢r N3))(—w2Ga + w1G3)

ij=1

+ (Nas + P N4 +19rNay))(—w2Gs + wi1Ga)

+((N1s + @(FN1+1r9rN1p))wz + (Nos + @ (N2 +r¢r N2 ,))w1)Gil

= 0[Ho?[® (—ri(Nawa + Nawg) + r’¢r (Nawa — Naw3))
— r (N3 w4 + Naswz)] + (G — Ho?r?)[(N1sw2 + wiNay)
+ @ (F(N1w2 + Nawi) + rer (—Nawz + Naw)]],

where we made use of the relatigii$) as well as
—w2G4 +w1G3 = (—wou — wlv)QZH = —rw4QZH,

—w2G3 — w1G4 = (wov — wlu)QzH = —I’w3Q2H.
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Since furthetNaw4 + Nawsz = 0, Nywo + Nowy = 0 and
1/ K 1/
N4w4—N3w3=§ 711 r(w3+w4)—§ +1r
N N 1 K ( 2, 2) 1/ K
— Now w1 = =, ——(w w5) =
2W2 1w1 r2+l 1 2 +1

2

one obtains for the expression above that

3 3. 1 K 1 K
111=Hp” | &ripr = 211 —r|— > mr (wawg — waw3s)
,S

+ 1,/ K ( + )
2\ 2 i lr W3,sW4 T W4, W3
1/ K 1/ K
+0o(G — HQZVZ) |:¢V(PF§ 1 + (E m”) (wiw2 — wowi)
S

_l’_
,/ (w1 sW2 — w2, vwl)]

[Hf292(¢>¢rr —roif + 7 (For +rgr))

Y
T 2Vir241
+ (Pror + ub — vi) (G — Ho?r?)]

K
- 52’ /m[G(@npy + i — Vi) — Ho?r%gr).

Here we made use of the relatierws sws + wa w3z = —F(For + rér) + ror¥ and
w2 w1 = uv — vii as well as

w1 swW2 —
Wb — bii = g + FGor +rr) — rerk.
Because oG ®r¢r = —(1/4)GHKo?r2¢p = —H 0%r?¢ one finally obtains

1/ K 2, . ,
11 = 5 mg[G(uv—vu)—ZHg (wy — )],

sincer?¢r = uv — vii. By Proposition 8

4
oy = Z gij dx; (3,) dx;(Vy,N) = 0
i,j=1

and using the equalities

Gawz — Gawg = (Uwz 4 vwa)o®H = ro’w1H,
—G3w3 — Gawg = (Vvws — Uw4)Q2H = —rgzwzH
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in addition to the above relations, one also sees thawHnishes, since biropositions 9
and 16

4
llss= ) i di(3,) dx;(Va,N) = E[~0t2(G1N1y — GaNay — GaNay)
i j=1
+061(G1N2,,+G3N3,y—G4Ns ) — 0SiNY(—GaN1 4y + G3N2y + G2N3 )
+0¢08p(—G3N1,, — GaN2y, + G2N4 )]
= E[—0t2(=G1N2 + G4aN4 — G3N3) + 0¢1(G1N1 — G3N4 — G4N3)
—0SiNP(G4N2 + G3N1 — G2Ng) + 0 Cosp(G3N2 — GaN1 + G2N3)]
1

K
=5\ a1 ZelGr(faws — Lawz) + Gar (-w3COSp + waSing)
+81r(Gaws — G3wa) + {or (—G3W3 — Gawa) + COSp(—Gaw1 — G3wy)

+sing(—Gaw1 + Gawz)]

1 K . .
=5\ 771 2elG — Ho’rror — (G = HoPr’gr

+ HQZV(Klwlr — {owor — w3 COSY + w4 SiNg)]
1 K . . .
= 5,/ ] n 1EQ[(—HQ2r2 + HQZ)VZ(pr + HQZV(}"3(/)[' —ror)] =0.

Analogously,

4
2= g (3, Va,N) = Y gj dx;(3) dx;(Va,N) =0,
i,j=1

4
113 =g/(3s. Vg, N) = Y gj dr1(3,) dx;(Vy,N)

ij=1
= EQ[N3,y(—Gawz+G3w1)+Ny o (—Gawr—G4aw1)+G1(N1,owo+No yw1)]
1
= EQ r2 m 1[ rwa(—ro w4H)—ru)3( ro w3H)+G1(w1 + wz)]
:E E [72Q2H~|—G HQZI'Z]
L 1 1HK ( +1) )G = 1 K
_ = _ , i
€2 r2+1 4 2VrZ11
Finally,
4
llzz= Y gijdx;(d,) dx;(Vy,N) =0,
ij=1

and the remaining components are determined by the symmetry of 1. O
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In order to compute the invariants of Il we need to express the second fundamental form
with respect to the orthonormal frankg, Y», Y3. In this case, we denote its components by
Il ;j Letk1, k2 andks be the eigenvalues of Il in this base, regarded as a symmetric transfor-
mation onTMji. The mean curvature, the first elementary symmetric function associated
with 11, is then given by the sunh = k1 + k2 + k3 = 17 + 115, + 1135, Now, writing
Y; = ajjoy; one has

3 3
i = g,(Yi, Vy,N) = ) aikaji g (O, Va, N) = Y aikajllu, 7
k=1 k=1

i.e., I =A-11-TA, where the coefficients of = (aij);,; are determined bgs. (3a) and
(3b). As a consequence of the previous theorem we obtain then the following result.

Corollary 1. The mean curvature of the hypersurfa@b@, hy) is given by

2
f) = 'k )
\/\/Q4(r2 + D244 #

wherek, = ((uv — i) (r2 + 1) — 2(ud — vi))/2 denotes the geodesic curvature of the
curver in $2. In particular, M3. is a minimal surface if and only i, = 0,i.e, if I"is a
great circle ins2.

Proof. One easily sees thatll = I3, = 0 as well as

133 = D?l111+ 2DFll13

_2 2K (r*+D K2 2?[(r? + DG (i —vii) —2(ui—vi) (H (r*+1)0? + K)]
2V re+1

B \/2 A2+ 1)2 + il 0ii) (r? + 1) — 2(ud — vi)].
o'\r

S0 = I35 We further remark thatjl, = 175 = 0 and

p_0 [ K DK _K [ K _ (r? 4+ 1)o?
BT2Vr2+1Uhzs 4V 2+l 2042 + 1)2 + 1434
Let us now compute the geodesic curvaturdofegarded as a curve i§f ~ C U {oo}

using the stereographic projection. With respect to the coordinatethe induced metric
on S? reads

. 1 1 0 18
82=v2zrn2\o 1) (18)

Writing vy, v2 for u, v the geodesic curvature éf is then given by (see, e.flL4])

kg = 4/ det852

U1 V2

L2 N3/2
.. 2 10+ 2 2. . | /(gijviv;)7e,
b1+ 35 Tjvivy U2+ 305 g Tfvivg |50
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the Christoffel symbolsf-f( being obtained from the formul48), where now the;j; denote
the components of > and thex; should be replaced by the correspondingNote that
02 4+ v3 = 1. We putL := (r? + 1)2, M := —4/(r? + 1)3 and obtain

LM , LM

1_ 2 _ 2
Mm=rp=Ih=—v Ih=-—7"
LM
1_ 1 2 1
Mp=In=1I%=—7v Ip=-—",

a direct calculation then yields

U1 V2

. 2 .. .. 2 .. | = 0102 — v2U1 + — (V1V2 — V2U1),
U1+ 200 Fijlvi vj U2+ ) Fijzvi vj 2L

and by noting thatM/2 = —2/(r2 + 1) andgijv;v; = ,/detggz = 1/L one finally has
(up to a sign)

ke = (G0 — 0it)(r? + 1) — 2(ud — vir)),
and thus the assertion. O

The third elementary symmetric function associated with 1l is the Gauss curvature; it is
given byk1 - k2 - k3 = det II* and equal to zero; the second one is the so-called second order
homogeneous curvature.

Corollary 2. The second order homogeneous curvature of the hypersurmt%sh,) is

G
8(04(r2 + 12+ 1H32 g’

K1k2 + K1Kk3 + k2Kk3 =

Proof. Ascomputed inthe proof of the previous corollary, the components of Il with respect
to the orthonormal framg8a) and (3bpre given by

0 0 0

K K
—10 0 —
I = 4oV r2+1
K K 5
4oV r2+1
The roots of the characteristic polynomial

KS
det(ll* — k1) = —« (—K(ﬁ ) - m)

are thency = 0,k23 = (=9 + /92 + K3/1602(r2 + 1)) /2. O
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SinceullM% = 02(r? + 1)2, the three elementary symmetric functions associated with
the second fundamental form, i.e., essentially its tfdcand the scalar curvatui®, are
manifestly invariant under the action of the isometry grou@)UThe fact that the mean
curvature of the hypersurfac%ﬁ is given in terms of the geodesic curvaturel/ofn $2
appears to be natural, since the geometry of the vector bahdté(C) is determined by
the elliptic geometry oP1(C) ~ 52. Note thatii — vii is the geodesic curvature &f as
a curve inC with respect to the Euclidean metric.

As an immediate consequence one obtains the following statement.

Corollary 3. LetI" be a curve ins? of bounded geodesic curvature. Then the functionals
/ n« dM13~ and f(Kle + k1K3 + K2K3)ﬁ dM?«

stay bounded fog > 3andg > 3/2, respectively

Consequently, the Willmore functionAl$* dM;°1 remains unbounded, the hypersurfaces
M13_ thus being not accessible to integral geometry.

5. On the geodesic flow of the hypersurfaceMI%

In this section, we will study the structure of the geodesic flow of the hypersurfaces
(M3, hy) and compute the exponential grovyalgb(Mfl) explicitly, atleast in the case where
I' is a generalized circle iff that arises by a Mdbius transform from a circleGrwith
center at the origin. In generdhe exponential growtbf an open, complete Riemannian
manifold (M", g) is defined as

Moo = lim SUIO1 log vol(Br(qo)).
R—o0 R

wheregg is a point inM" and vol Bg (¢go)) denotes the volume of the ball of radiRswith

center atgp. If uoo = 0, one says that/” hassubexponential growthn caseM” has

finite volume, this quantity is not interesting, since then one always:has= 0, but for

vol(M") = oo the exponential growth is directly related to the infimum of the essential

spectrum of the Laplace operator &fi'. We will return to this point inSection 9 There

we will be able to calculate the exponential grovvtr(Mfi) for arbitrary closed curves.
Lety(t) = ¥(s(1), o(1), ¢(r)) be a smooth curve iMfL andX () = Z?:l X/ (1)

d/dy; a vector field along/ (7). Its covariant derivative with respect {ois given by the

formula

VX < fd s
< =2 | gX' @+ X X @y @ | oy,
k=1 i,j=1
Whereij( = ht(v% dn;» Op,) Are the components of the Levi-Civita connectioMﬁ with
respect to the coordinate frarti, d,, 9, }. For a geodesic it holds th&ty (r)/dr = 0 and
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one obtains the system of differential equations

PO+ I @)y @y ) =0, k=123 (19)
iJj

However, it turns out to be more convenient to determine the geodesic lines of the hypersur-
facesM% by considering the first integrals of the geodesic flow. Let us consider therefore
the geodesic systefM3., &) of M3, where the Lagrangiafiis given by the metric,

E:TMS > R, X > 2h(X, X).

The function€is afirst integral of the geodesic flow, i.e. with respect to the coordinate reper
{95, 99, 9y} ONe has that

EG (0)=3[h1152(T) + 2(h125 (D)0 (T) + ha3s (1) (1)) + h220*(7) + hasp? ()] =E

is constant for any geodesic line. Let ngw= ¥ (s, o, ) andz € €7 € S1. Since the
coefficients of the metrig, do not depend on the angle variablethe map

K, MEN MY — MEn M4, i.(p) = W(s, 0, (¢ + 7) mod 2r),

represents a one-parameter family of isometries. Consequently, using Noether's theorem,
the function

d
My T(MPEN MY > R, Mi(X) = hy (EKT(I))“’:O) = h; (0, X)|p.

is a second first integral of the geodesic flow and a computation yields the formula
Ma(y (1)) = h13$(t) + hazp(r) = My. (20)

Fors = 0 andg = 0 it can be seen immediately frofy. (19)for a geodesic or the relation
E(y (1)) = Ethat, for

2 2 5\/94(}’2 + 12 + 14

CTETEDE T Q202+ 1)2

, §,@ constant (21)

the curvey (t) = ¥ (s, o(t), ¢) must be a geodesic Mﬁ.

We will assume from now on that = rg is constant and, in this case, determine the
distance of a poinp = ¥ (s, o, ¢) to the setl" = {[0, 0]} C Mﬁ. Sincer(s) = rg and
¢r(s) = e/ro are constant = +1, the coefficientgjj also do not depend anso that

e :M%0M4—>M13~DM4, u(p) =¥ ((s +tr) mod Ztr, 0, @),

is an additional one-parameter group of isometries and Noether’s theorem gives a third first
integral,

d
Mo T(MEN MY >R, MaX):=h (Eur(p)h:o) = 1 (35, X)),

ie.,
Mo(y (1)) = h115(t) + h13p(t) = M> (22)
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is constant for any geodesic line as well. Friws. (20) and (22)pne obtains

28 = K(r? 4+ 1)6? + M1¢ + Ms, (23)
and
Mi— 2+ DKo%

_  Ma— (K + Ho?o%s
ro?K '

o ro?K

b

Solving the latter two equations with respectitands yields

o= (e, — KHHOCM (2 (K + HeDe"r™ + ))
rK o2 r
_ 4+ GHo) M1 — 4s Mor
B 402G ’
as well as
§= - [AG M1 — (r* + D(AMy1 — eMar)K + 40° H My)]
4KGp4r
= 1622 [4(G — K(® + 1) — Ho?(r® + 1) M + 4e(r® + 1rk M)
r

_—erMa+ (2 + 1)M2K

402 ’
thus the functions = s(r) andy = ¢(t) are determined by the functien= o(t). Eq. (23)
now reads

1 1
2= [4<r2 + D% + 15 (UM — 26 MiMar + (% + DME) + GHQZMb] .

Note thatM? — 2e MyMor + (r? + M3 = (M1 — e Mor)? + M3 is non-negative.
By inserting the expressions f6r and H into the previous equation one finally obtains the
following ordinary differential equation fay = o(7):

;2 o G Ve a 1 ( M

T 20?7 4202+ \ 0% 02 + 1)°

+ (M1 — eMar)? + M§> .

(24)

Thus, forr(s) = ro, all geodesicy () = ¥ (s(1), 0(1), ¢(1)) In M,% N M* are parame-
terized by the three parameteéisMi, M;. We are now able to compute the distance of a

pointp € M3, ._,  tothe curver.

Proposition 10. Let I' = rge’¢" be a circle inC of radiusr(s) = rg. The distance of a
point po = ¥ (s0, 00, ¥0) € M3 N M* to the curvel” C M3 is given by

. 1 113 03r2+1)72
dist(po, I') = — o022+ DF[ =, =, 2, 200~ ), 25
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whereF denotes the hypergeometric functievhich is defined for € C, |z| < 1, by the
series

af al@+DBB+D ,
T o xn.12 ST

the parameters, 8, y being arbitrary complex numberg # 0, 1, £2, ....

Fo, B,y,z) =1+

Proof. Let y (&, M1, M2) : (O, 9] — M,% be a geodesic of positive energyfrom
the curverl” to the pointpg with coordinatesyg, oo, ¢o. For M1, M2 = 0 the geodesic
y (€, M1, M>) is precisely the geodesic lirfd1) already described. If11 were not equal
to zero, at leasp would be different from zero almost everywhere; them (24)would
imply that there exists a critical valug,it > O for which

2 4742
+1 t*M
N e <Q4(r2 gt M- eMen? M§> . (28

For smaller values af the right-hand side aof24) would become negative, implying that
o(t) > ocrit > 0 must hold for allt € (0, 7p]. This means that foAM1 #£ 0 the geodesic
y (€, M1, M>) can never reach the curvé. Assume thereford1; = 0, M> being arbi-
trary. By (24) we have

5= 4,/0%(r?2 + 12 + 14 — (r? + 1)’ M3
402(r2 + 1)2 ‘

In case that € — (r2 + 1)2/\/1% < 0, this expression becomes negative for small
so thaty (&, M1 = 0,4t26/(r? + 1) < M3) can never reach the sét. However, for
412€ — (r? + 1)2M5 > 0 we have thap? is non-negative for alt, as well as

241 ) (r? +1)2

Mo, 5= M
oA+ 12414 2\/0*(r? + 1% + 14

so there are infinitely many geodesic line&, M1 = 0, 4t2£/(r? + 1)2 < M3) reaching
the setl” in M,% in a spiral motion. In this cas&g. (24)implies foru1(t) = 0%(t)(r2 +1)
the relation

uir =200(r> +1) = \/45,/u§ + 14— (r2+ 1)2M3 > 0, (27)

i.e.,u1,, as well ast; are strictly monotone increasing as functions iand the poinpg is
reached earliest, that is, for smallegtin case thai\, is also zero. Since the length of a
geodesic is given by

0 70
LMty = /0 176, My, M) de = fo G de = V2E,

the distance of the poinig to the setl” C M,% must be given by the length of the geodesic
y(E M1=Mz=0).
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The integral/ 1/v/ax + 4 dx cannot be represented by elementary functions and one

has
d 113 a¥
[ (282%)
Yk + 14 t 2 4 2 4

whereF(«, 8, y, z) isthe hypergeometric function introduced above. FapRe8 —y) < 0

the defining series converges evengh< 1; the hypergeometric function has an analytic

continuation foriz| > 1 and under the assumption thatjRe- Reg > 0 it can be written

for all z as the integral

Fapor = | P P,
reyry —a Jo
wherel” denotes the Gamma function afalg(—z)| < 7 is assumed in order to make the
integrand uniquely defined. fis real, differentiation under the integral with respect to
gives the stated equali{8) if one takes the relatio(m, 8, 8,z) = (1 —z)"", m € R,
B arbitrary, into account additionally. Fawt; = M> = 0 we finally deduce fronf27)

1 /TO U1t q 1 /”1(70) duq
0= . T = e —
2VEJo 2 1 44 2VEJ 2

113 _ui(r@)

= %ul(fo)f(

21/E 2242 4
and thus
: 1 113 o3(r?2+1)72
d t ’ r=—7= 5(r? 1 A A A )
ISt(po, 1) tﬁQo(T + )7-"(2 77 -
finishing the proof. |

We are now in a position to compute the exponential growth of the hypersum‘%de
case that™ = 9B(0, rg) is a circle inC. Note that we can estimate the volume of the ball
with radiusR around a poingg € I C M,Ci by the volume of the union over aR-balls
around points of ", thus obtaining

2 R 2nr
vol(Bg(qo)) < vol (U BR(q)) = / /Q Vdeth; ds A do A dg
0 0 0

qgel’
= 271\/5/QR 27” 93(’”2 1 s
o Jo  Jo*r2+12+14
4A7%r\/8

_ 4.2 2, 43/4_ 3
= 1 t -1,
3(r2+1)[(@R(r + D +19) ]
since by our previous considerations

UBr(@) ={p=W(s, 0k ¢) € M} 15 €[0,27r), ¢ € [0, 27))},
qgel’
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wherepy, is given by the expressig25) for R = dist(p, I'). The analytic continuation of
Fa, B, y, z) for |z] > 1is given by the formula

_I'Hre—oa — 1
f(d,ﬁ,y,Z)—m(—Z) f(a,ot+1—7/,a+1—,3,z>
romre—p, ( 1)
., ~~, S\ f 9 1_ b 1_ 7_ bl
F(a)F(y—ﬁ)( 2) B.B+1—-vy, B+ o,

so that forgg being big enough the distance gf = ¥ (so, 00, ¢o) to the setl” is given by

1 5, r@/2r-1/4 1.5 -
I 1 Z - -
tﬁg‘)(r“[ r@/aHraq @5(r2+1>f(2’0’ 4’ 03(r2+1)2

+F(3/2)F(1/4) t . 1 13 —r4
L1/ G/ oo/r2+1° \4 474 03(r2 + 1)2

=F(3/2)F(—1/4)L+F(3/2)F(1/4) r2+1QO
r/Hra 2 raparemy 2
y (l+1L+...)
1205(r2 + 1)2 ’

implying that dist po, I') is proportional taogv/r2 + 1 for 1 < 0o. We obtain forgg € I”
that

dist(po, I") =

o1
leo = log vol(Br(qo))

4./8r2%r
3(r2+ 1)

r3/2r(-1/4) t r@3/2ra/d [r2+1
X — + 0
ra/ara vz rareMay 2

-1
PR A
X —_—— e
12052 1 12

) 332 12
— lim °(r +1)

0—> 00 94(’.2 + 1)2 _I_ t4 _ t3 4/94(’.2 + 1)2 _I_ t4

-1
r@/2ra/d) [r2+1 1 4
X 1—-—— 4 .- — 07
I'(1/2)I(5/4) 2 4022+ 1)2
the corresponding limes superior therefore being zero, too. By isometry arguments we thus
obtain the following proposition.

< lim [Iog +log((e*(r? + 1)? + 1434 — 13)}
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Proposition 11. Let I = dB(0, rp) be a circle inC with center at the origin and radius
ro. Thenuso(M3 ) = Ofor all A € U(2).

We want to finish this section with some remarks concerning closed geodeM%,in
where we assume again thats a circle inC of radiusr (s) = rg. In this caseM,?i is foliated

by the two-dimensional toﬁgzoyro, 0o > 0 being constant. Let(t) = ¥ (s(t), 00, (1)) :

[0,L,] - TQZOJ0 C Mfi be ageodesic line parameterized by arc length. Sinee0, §
and ¢ are also zero. Relatiof23) then readsMas = 26 — M1¢ and Eq. (26) must
hold, representing a condition &h= (oo, ro) for given values ofM 1, M>. Now, by the
(st x Sb)-symmetry of 72 , |
¥ (50, 00, 90) = ¥ (so + 2ro - n, 00, 90 + 27 - m), n,m € Z.
Writing s(t) = so + $7, ¢(t) = @o + ¢t we see thay (t) is a closed geodesic if and only
if $L, = 2nron and¢L, = 2rm are satisfied, i.e., if
S =10 en-Qf, n.m#0,
() m

of course, ifn orm are zeroy (t) is also a closed geodesic. Inserting the expressions for
and¢ computed above we obtain for the previous condition

—eroMa + (r§ + D M2
AM1 — ergM>) + GHQSMl

€ ro~Q*.

Note thatGH = 4r4/0%(r2 + 1)3. Taking all together we find as solutions &1 and M

2 2
m@ry+1)/4+enrg , 5 2 ro
op(rg + D7, Mo = (n + eMy),
0g(3 + 2 +14 00 ré+1

My =

wheren, m are integers. The curye(&, M1, M>) is then a closed geodesiclﬁo,m, where
&, M1, M depend oo, ro, n, m as explained above. In particular, there must be at least
countably many closed geodesicﬂf&m C M%.

6. Integrals of subharmonic functions on the hypersurfaceM%

In this section we will show that th&”-kernel of the Laplacian on the hypersurfaces
(M3, h;) becomes trivial for alp > 1, wherer > 0 andI” are arbitrary. We will base our
considerations on the much more general work of Greene anfl@yuwho studied inte-
grals of certain generalized subharmonic functions on connected non-compact Riemannian
manifolds admitting a canonical exhaustion function and showed that these integrals cannot
be bounded. More precisely, they showed that the following theorem holds.

Theorem 3(Greene and Wu)Let M be a connected non-compact orienf&8 Riemannian
manifold. Suppose that there exists a continuous proper fungtior — R and a compact
setK, C M such that
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(@) ¢lmk, is c?;
(b) ¢lm\k, is uniformly Lipschitz continuous
(©) ¢lm\k, is subharmonic

Denote by (M) the closure of the set of &ll*® subharmonic functions i6°%(M). Then
if f is a non-negative function i’ (M) such that

{peM: f(p)>00¢(p) > maxep, gradg(p) # O} # 0,

there exist constants ; > 0 and o such that
/ fdM > A¢(r — 10)
MY ’

for all T > 19, whereM{¢ denotes the set of all € M such thatp(p) < t; in particular,
[y fdM = +oo0.

A description of the seE' (M) is given by the following proposition.

Proposition 12 (Greene and Wu)Let M be a non-compaaf®> Riemannian manifold.
Then the following functions are i (M):

(1) any functionf : M — R that is the limit uniformly on compact subsets of M of a
sequence of functions iB(M);

(2) C? subharmonic functions

(3) u?, where u is a2 non-negative subharmonic function apd> 1;

(4) |u|? where u is a harmonic function ang> 1,

(5) any geodesically convex function

In general, the scalar Laplacian on a Riemannian man{faé, g), acting onC* func-
tions, is given byA f = —div(gradf), where for a vector field& € X(M") its divergence
with respect to an orthonormal franfgy, .. ., ¥, } is given by

div(X) = g(Vr, X, Y) =Y Yi(X) + > Xwj(¥y).

i=1 i=1 i,j=1

Here theX’ denote the components &fand thewj the connection forms of the Levi-Civita
connectioriv of M". In the following, we will show that the above results also apply for the
considered hypersurfac&ﬁ, I" being arbitrary, obtaining in particular the vanishing of the
L?-kernel of the Laplacian even in caﬁe}’i is not complete. Let us first start considering
the function

e* =0oVri+1,

which isC* on M% N M*. One calculates with respect to the orthonormal fra(@eyand
(3b)

1
Y1(p™) = r+1, Y1Y1(p™) = —T(Iog K) oVr2+1,
22

1
v hoo
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and thus

3

1 /1 2
Ag*=—Y1Y1(p*) = Y Yi(p")wu(¥;) = os (E(IOQK),Q - 5) r2+1
i—1

_m< 4 )

-2
203(r2+1)%2  \ o*(r2 4+ 1)2 + 14

Because of sypr*(o*(r? + 1)? + 1)~! = 1, it follows thate* is subharmonic and one
computes further that

Vo2 + 12+ 14

rade*|?> = Y2(p*) = K1 =
lgrade”| 1) 20202+ 1)

We define now th&*° functioni : R — [0, 1) by A(x) = -1/x* forx > 0 andi(x) =0
for x < 0 and put

[ A — y) dy
[Famr@—y)ydy

The functionu : R — [0, 1] is C*° too, monotone, equal to zero fer< 0 and 1 forx > 1.
LetO<sg < L. Then

¢ = ovr?+1u(o)

is C>° on M3 and subharmonic oi} \ K,,, where

p(x) = (29)

K, ::{p:p(s,g,(p)EM?w:Q§1,5550}~

Note thatX, is compact and thai is proper, i.e.,

¢ Y0, k] ={p € M} 1 oVr? + Lu(o) <k}
is compact for allk € Rg. We show thatp is globally Lipschitz. In order to do so, let
us first remark thatgradg| < B, on M3, whereB,, is a constant, sincgrade|? tends
asymptotically to 1/2 onM% \ K, and, as a smooth function, remains bounde&gnNow
let p andg be two points onM3, andy (7) the shortest geodesic between them so that
dist(p, g) = L, ; we assume that is parameterized by arc length. Since

. ) d
h:(grade(y (70)), ¥ (t0)) = de(y (10)) (¥ (t0)) = Ew(y(r))

9
=10

one has by Cauchy—-Schwarz that

LV
= '/o hi(grade(y (1)), y (7)) dt

Ly, d
lo(p) —e(@)] = ‘/ d—w(y(r))dt
0 T

L
sAmewwamwmmfsmmwnw,
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i.e., ¢ is uniformly Lipschitz continuous 0|M,§. Summing up we obtain the following
proposition.

Proposition 13. On the connected non-compact orient€d® Riemannian manifolds
(M3, hy) there existsfor every: # 0 and every curvd”, a proper continuous function
¢ : M3 — Rand a compact sek,, C M3 such that

(@) pisC™,
(b) ¢ is uniformly Lipschitz
(c) §0|M13~\K<p is subharmonic

In particular, the conclusions ofheorem Ghold.

Note that the above proposition is also true in case0, i.e., for the non-complet€>
Riemannian manifoldSM% N M?*, ho). As a consequence of the proposition we obtain the
following vanishing corollary.

Corollary 4. Let p > 1. There exist naL”-harmonic functionson the hypersurfaces
(Mfi, h,) for arbitrary r € R and curved".

Proof. Let ¢ and K, be given as in the previous proposition anddebe a harmonic
function onMﬁ. By Proposition 12o0ne hagu|” € E(Mli) for all p > 1. Now, by the
Aronszajn—Cordes uniqueness theorem for second order differential 0p@%p§§aa (x)
9% with elliptic metric principal symbo]1] « cannot vanish identically OM% \ K, unless
it vanishes everywhere. Therefore, fonot being trivial, the sefm ¢ M% D ul?(m) >
0, p(m) > maxg, ¢, grade(m) # 0} is not empty, and bfheorem Zhere exist constants
A andzg such that

/ ul? dMF. = Az — 10)
M

T

forall T > 1. In particular, Kef»(A) = {0} forall p > 1. O

7. Einstein andT-Killing spinors on the hypersurfacesM%

In the sequel, we will consider the Dirac operaf@on the hypersurface® 3, whose
geometry has been studied in the previous sectionst Bof, the homotopy type oMﬁ
is given byR? x I'/{=1}. If the curverl is not cIosedMﬁ cannot be complete and admits
only one spin structure. OtherwiM,% has the same homotopy type as the citleand,
consequently, admits two spin structures. The trivial spin structure is characterized by the
fact that there exists a global trivialization of the Spin(3)-principal bundle covering an arbi-
trary orthonormal frame bundle, while the non-trivial spin structure admits a trivialization
of this kind only locally. On the other hand, the unique spin structure of the Eguchi-Hanson
spacef 2 induces a spin structure on the hypersurfmﬁ C H? by reduction of the former
with respect to the normal vector field M,%. It turns out that the induced spin structure



P. Ramacher/Journal of Geometry and Physics 44 (2003) 407-474 447

is the trivial one if and only if the winding number of the closed cufvés even. In the
following most of the results will be derived for the induced spin structure, though some of
them that follow from purely geometric arguments hold for both spin structures.

First we will try to determine solutions to the Dirac equation that are also solutions to the
Einstein equation and we will show that the aforementioned hypersurfaces do notadmit such
solutions in case # 0. Nevertheless, it is possible to construct such solutions explicitly by
deformation into the singular situation, though these solutions are no longer complete. In
the complete case andM3. is a minimal surface, one can further show the existence of a
spinor field satisfying a generalized Killing equation for spinors.

Letey, ..., e, denote the standard basis of the Euclidean sficand introduce the
complex two-dimensional matrices

R R N

In casen = 2m, the spin representation of thedimensional complex Clifford algebi@&;
is given by the isomorphism

K2m * Cy,y = ENA(Agp), kom(Ej)) =E® - QEQgH®T® --®T,

wherej = 1,...,2m anda(j) is equal to 1 and 2 foj odd and even, respectively. For
n = 2m + 1 one has the representation

N pr
Komt1 : Copiq ~ ENHAzm+1) © ENA(Az11)— ENK( A2y 41),
komy1(ej) = kam(ej), Komy1(ezm+1) ‘=T ®---®T,

whereAs, = Aspi1 = Asyi1 = C2" denote the corresponding representation spaces
as well as the representations itself. The induced representations ¢t SgirC;; will be
denoted by the same symbols.

We denote b)E(M%) or simply X' the spinor bundle considered in each casMéf, by
{-, -} its Hermitian inner product and by (") the space of smooth sectionsih Further,
we identify the tangent bundréM:} and the cotangent bund?é*M% with the aid of#,.
The Clifford muItipIicationTM3F QR E(Mﬁ) — E(Mﬁ) of a spinor and a vector can then
be extended naturally to a multiplicatiot(M3) ®@g £(M3) — £ (M3) of a spinorand a
form. The Levi-Civita connectiol¥ of (M,%, g:) induces a covariant derivative E(M%),
which we will denote by, too. With respect to an orthonormal frafig, Y», Y3} one has
for V the local representation

3
1
V:I(®) - T Mo x), v¢=d¢+52wijyi.yj.¢,

i<j
where thewjj are the connection forms of the Levi-Civita connectiorThe Dirac operator
D:I'(¥X)— I'(¥)on Mfi is then locally given by

3
Dy =) Y-V,

i=1
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where X - ¢ denotes the Clifford multiplication of a vector field with a spinor; in the
realization of the complex Clifford algebi@; ~ M (2, C) & M (2, C) given above, the
vectorsYy, Y2, Y3 are represented by the matrigas go, —iT, respectively. Note that in the
three-dimensional Clifford algebra it hold that= sjje; e, wheresj denotes the totally
skew symmetric tensor. With respect to the global trivializati@a) and (3b}the 1-forms
wjj have been computed Proposition 2 Let us now introduce the following definitions.

Definition 1. A non-trivial spinor fieldy» on a Riemannian spin manifolgd”, g) with
n > 3 is called gpositiveresp.negative Einstein spinowith eigenvaluer € R if it is a
solution of the Dirac equation and the Einstein equation

Dy = A, Ric — 3Sg= +17y,

whereTy, (X,Y) = Re(X - Vyy +Y - Vx i, ) is the symmetrig0, 2)-tensor field defined
by v, the energy—momentum tensorof

As shown in[8], in dimension 3 and in case that the scalar curvature does not vanish, the
existence of an Einstein spinor is equivalent to the existence of a so-called WK spinor.

Definition 2. Let (M", g) be a Riemannian spin manifold whose scalar curvasudees
not vanish anywhere. A non-trivial spinor field o satisfying the field equation

-1 :
200 — DSVxy = ndS(X)¥ + zxLz(z Ric(X) =S¥ - +X-dS-v  (30)
n—
is called aWK spinorwith WK numben € R.

For generalk each solutiony of the field equation (30)with AS < 0 andAS > O
corresponds to a positive and negative Einstein spinor with eigenvahespectively. For
the existence of a WK spinor the following necessary condition is krf@n

Proposition 14 (Friedrich and Kim).Let (M", g) be a Riemannian spin manifold with
non-vanishing scalar curvature angd a WK spinor on(M", g) with WK numben. Then
4(n — 1)A°[(n® — 5n + 8)S? — 4|Ric|?]
= (n —2)°[(n — 1S + n|dS|? + 2(n — 1)S(AS)]. (31)

We show in the following that, for # 0, the condition(31) cannot be fulfilled orM13_
for any choice of the curvé'.

Proposition 15. For ## 0and for any spin structure the hypersurfamﬁf«, hy) donotad-
mit solutions of the WK equation ajtftencethere can be no solution to the Dirac—Einstein
system

Proof. Assume that a WK spinor with WK number is given on(MI?:, hy). Then, by
Proposition 14

8).2(25% — 4|Ric|?) = 252 + 3|dS|? + 4S(AS) (32)
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must hold, wheré has been computeditheorem Lsing the relatiori-2+1) Ss=rroS,
one computes with respect to the trivializati@a) and (3b)

1 9 1 03(r? + 1)? 4,2, 12
Y1(S) = —S§=— -2 1)3),
e Vhaz 90 Vh22 (04(r? +1)2 t4)5/2( ey
1 9 3
Yo(S —85=0, va$)=DpLs+ES F— =0,
2(8) = Nt 3(8) = 35 + 50 + P

thus obtaining for the Laplacian sfthat

3
—AS=divgrads = Y1¥1(5) + Y Y1(Swy (¥;)
i=1

1
=Y1Y1(S) + Y1(S) (é(log h33),, — (log D),g)

1
h22
2
=Y1Y1(S) + Yl(S)T,
33

compareProposition 20ne computes further that

1 1 1 1
Y1Y1(S) = —— (—S, ) = —S8 2= —5h22,S,
Vhoo \ v/ ho2 ¢ .0 h22 @ 2(}122)2 ene
2(468 — 20(1 + r?)2r*0* + 3(1 + r?)*0®)
©4(r2 + 1% +143
as well as
2 22‘4 _ A4 r2 +1 2
Yi(S) 2 — 0™ ( )

N A2+ D2+ 1h2
obtaining forA S the expression

180%4(r2 + D2 + 08(r2 + 1)*

AS =
(0*(r? + 1% + 143

Since|dS|? = Y1($)?, |Ric|?> = TrRic® = R2, + R3,+ RZ,, one obtains
2 1 (
*(r2 + 1)2 4143
for the left-hand side of32) and
-2
(©4(r2 + 12 + 143
for the right-hand side, so that the conditi@2) reads

—248 — 40%*(r? + 1)?)

S[—8% + 480" (r* + 1)1

22(—12:8 — 20%(r% + D% = S8 — 60* (2 + 1)%rY),
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and one sees thatin cas¢ 0, it cannot be satisfied for any choice of the cufueNote that
since the integrability conditio(B82) is purely geometric, the assertion of the proposition
holds for any spin structure. O

Only for ¢+ = 0 the condition(32) is fulfilled for arbitrary values o, since then both
sides vanish. In this case the hypersurfe(méé, ho) are no longer complete for any curve,
the metric becoming degenerate along the exceptional curve; one finds thaG = 2,

H = 0 and the Ricci tensor and the scalar curvature are

. 0 0 0
Ric= —— | 0 —o%2+1)2 0 ,
0 0 —0*r? + 1)
1
- 33
0%(r2 +1) (33)

In the following we show that, in this case, solutions of the Dirac—Einstein system can be
constructed explicitly omMﬁ N M*, ho) for an arbitrary choice of the cuné.

In order to do so lefr be a non-trivial spinor field OM% that satisfies the spinequation
(30)forn = 3,

3 26 1
Vit = 5o SOV + TRICX) Y = AX Y+ g X dS -y

Puttingyr = /—Sx, the above equation can be reformulated into an equatign.fdsing
V(fy) =df ® v + fVy for afunctionf and the relatiorX - dS = —dS(X) + X x dS
in the three-dimensional Clifford algebra yields

2 . 1

As already shown, with respect to the b&3a) and (3bpnly Y1(S) is different from zero
and one obtains

X x dS = 03(X)Y1(S)Y2 — 02(X)Y1(S)Ya.
Further, one has

2 2R11— S 2Ry — S 2R33— S

“RicX) - X ="M+ S22 20+ 272 3(X)vs.

S S S S
In the realization of the complex Clifford algebra given above one then obtains due to
Proposition Zhat

1 1 w23 —w12 — w13 X1
Vx=dx+z) wj¥i-Y;-x =dx + = . .
2 ; we 2\ wip—iwiz  —iwps x2

_ 1 (loghszs), ( O —w? 0 w3 X1
_dX+2./h22|: 2 <w2 0 +(og D), iwd3 0 x2 ]’




P. Ramacher/Journal of Geometry and Physics 44 (2003) 407-474 451

Now, ift =0
2R11 — — —
Ru=-S_ _, 2R=2-S_, 2Rs-S_,
S S S
as well as

1 2 2
(logD), = ——, (logh3zz) o = —, (log$) 0 =——.
Q Q Q

Summing up(34) now reads
dx1 _ly —iwl 0 1 0 w3 4 w?
dyxo | 0 iwl 2Q«//’l2 w3 — w? 0
1 0 —w? —iw® x1
ZQ«//’ZZ w? — w3 0 X2
_, —iwlt 'O X1 ’
0 o)\ x

the summandsX x dS)/4S and)_, _ ;@i (X)e; - ej/2 canceling out each other. Since
dw1 = 0, the system above can be integrated. Taking into account the equgality-d

3 Yi(xj)e' = xj.sds + xj.0do + x)., de and the expressions for thé one derives
the system of partial differential equations

O (xi\_(fo O)\[(x A (x\_(fo O\ [
as\x2) \0 fo)\x)’ do\x2) \0 f£)\x)’
where

fo=

r2+ 1K, fo=—irm/ 2+ DK.

are functions in the variablesands. Note that(+2 + 1) fo = r7of>. Further, one has

8f )»il [ K o f
_— = —_ —_ —L)'T =
Ras72=¢ 2Vr2+1 o

showing that
X1 = efz(S)Q’ X2 = e f2)e

is a solution of the above system. Transforming back to the original WK equation yields
the following proposition.

Proposition 16. Consider the family of hypersurfaceMﬁ N M*, ho), where I is an
arbitrary curve. Then

1 e—)m/Z(r2+l)Qi
B oV r2 +1 e)m/Z(r2+l)Qi
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is a WK spinor of lengthy |2 = —S|x|2 = —S(Ix1/? + |x2/%) = —2S and WK number
A € R. Thus the normalized spinor

_g 1 eV 2(r2+ Dol
v =
Ik ovV2r? + DA | @v/207 D

is an Einstein spinor ot/ N M* with eigenvalue..

The homotopy type o3 N M* is given byR* x ST x I'; therefore it has at least
two spin structures, the one involved here being determined by the global triviali¢adipn
and (3b) Recall thathL N M* is parameterized by the length parametaf the curve
I'(s) = r(s) €*r®) < C and the fiber parameters9 o < oo, 0 < ¢ < 27. The metric
ho is then given by the formula

ho = 2(0? ds? + (r? + 1)(do? + 0% dp?)) + rio ds do + r?¢ro? ds dg,

and the Ricci tensor has rank 2, séq. (33) Similar examples of WK spinors on a
three-dimensional non-complete Riemannian manifold with negative scalar curvature have
been constructed i8].

We introduce now the notion of B-Killing spinor [9].

Definition 3. Let (M", g) be a Riemannian spin manifold. A spinor figldwithout zeros
will be called aT-Killing spinorif the trace TkTy) = @/nvi® Tr(Ty) is constant ang/
is a solution of the field equation

Vi = —3Ty(X) -, X € X(M™).

Herefw(X, Y) = (1/||w||2)T¢(X, Y) is the energy—momentum tensor of the normalized
spinory /[y .

As remarked at the beginningH?, g,) is endowed with a hyper-Kahler structure and
therefore Ricci-flat and self-dual. Due to this, there is a parallel spinégfgmand the study
of its restriction toM,:’l will enable us to construct a-Killing spinor explicitly. There we
follow a similar construction carried out [i7,9], where the restriction of a parallel spinor
on the Euclidean spa@®? to an isometrically immersed closed 2-surface of constant mean
curvature is considered, yielding examplegeKilling spinors on any surface of constant
mean curvature i3,

We consider first the restriction of the spinor bundleft to the submanifoldy/?,
(compard?]). Note that the Clifford representatiaty; 2 can be constructed directly from
the Clifford representatiorty 1 by setting

Ap42 := A2ky1 © Azgy1,

and defining the Clifford multiplication imy2 by means of the Clifford multiplication
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in Agq1,
e - (Y1®Y2)i=e - Y1 @ (—ei -¥2), 1=<i<2k+1,

ex+2 - (V1@ ¥2) ‘= Y2 @ (—v1).
The mapping
fri=iYer, . en2)  Apkr2 = Az

is an automorphism of the corresponding $gin+ 2)-representation, and because of
(e1,...,exn42)° = (=D)L it turns out to be an involution. Thus the spin representation
Aor+2 decomposes into the eigensubspaces, aind we denote them bﬁkﬁ. Explicitly,
one has

FW1®v2) =i"er, ..., i1 Vo Der, ..., ems1- V1),

yielding in particular fork = 1 the relation
S (W1 @ ¥2) = —(eree3 - Y2 @ erezez - Y1) = Y2 & Y1,

sinceejezes = —1 in the three-dimensional Clifford algebra. In this way, one obtains
Ay ={Y1@© Y2 € Ay Y2 = £y},

i.e., a spinor inAZ or A, uniquely defines a spinor idz and vice versa. Thus we have
defined two isomorphisms of SEB) representations,

Az~ AF g1 01 @ (1) (35)

Since the four-dimensional spin manifalé 2, g,) is simply connected, it has only one spin
structure, and we denote the corresponding spinor bundig:hy It splits into the subbun-
dIesE;2 andX',, according to the above decompositionf, and as a consequence of
Aq = A3z ® Az and(35) we have the identifications

~ ~ 5t
Ty X EOT, T T,

whereX is the induced spinor bundle cmfi. Consider now a spinor field™ F(E;Z)
and its restrictiorwljl3 = ¢1 ® ¢1 to M3, whereg; € I'(X) is a three-dimensional
r

spinor field. In particular, note that for a field of unit normal vectorsmf_l the relation

N - (p1 @ ¢1) = @1 D (—¢1) holds, according to the realization df4 given above. By
using the local formulas for the different covariant derivatives one obtains for the spinorial
derivative ofp™ on M3 the relation

) 1
VT =deT X+ 5 Y oYY (1@ )
1<i<j<3

1
+5 1;4@40% "N - (¢1 0 ¢1)

1 2 2
=(V§¢1®V§¢1)—§(V§’ N-p1®VE'N .- @)
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3
for every vector fieldx € TMS,, sincewjj(X) = gt(V)’{ZYi, Y;) = h,(foFYi, Y;) and
wia(X) = g,(Vf(’zY,-, N) = —h (Y, V)‘;IZN). Here and until the end of this section
{Y1, Yo, Y3} denotes an arbitrary section in the frame bundIqu?. Since one part of
the Weyl tensor of the Eguchi~Hanson spatevanishes, we can assume that the parallel

. . . : . z .
spinor onH? is contained mI“(ZJ;Z) and given bypt. HenceVX”2<pJr = 0, and with
(x) = VQZN we obtain the equation

Vier=31X)-¢;m

for the corresponding three-dimensional spipgrFurther, since 1l is a symmetric bilinear
form, Z?:l Y; - 11 (Y;) = —$ is a scalar and one obtains

)
D¥p1=) Y- Vig1= —5 ¢

moreovery; has constant length because it is given by the restriction of a parallel spinor.
We summarize these results in the following lemma.

Lemma 1. Let X denote the induced spinor bundlemﬁ. Then there exists a spinor
Y* e I'(X) on M3 with

Vvt =—30X)y*,  Dy*=3ny*. |yl =1
Let nowy* be given as in the previous lemma. THépy* = —(I1(X)/2) - ¥*, so that
Ty (X, Z) = 1 Re(X - I(Z) - ¥+ Z- (X)) - ¢¥* ¥*), X,ZeXM>).

2||y*)12

Making use of the relation R¥ - ¢, v) = 0, which holds for an arbitrary vector fielk
and spinory, one computes in the base of the

3
~ 1 . .
Ty«(X,Z)=————-=Re E X'Z/+ Z' X)W Y - Yy -yt gt

3
1 o
=———-Re(-2 X'Z7NE*, ¥ ) = 11(X, 2),
21912 < 2 Xz gy I”> X2
i,j=1
since only the summands with= k are different from zero. In particular, one has
1 3
Tr(Tye) = = DRI -y, ") =Trilz = 5,
i=1

and it follows that T(fw) is constant if$) is constant. Since the latter only occursiif
vanishes identically, we deduce the following proposition.
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Proposition 17. Denote byX' the induced spinor bundle (Mﬁ and IetMﬁ be a minimal
surfacei.e, I" a great circle inS2. Then there exists a T-Killing spinar* € I'(X) with
Tr(Ty+) = 0 satisfying the field equation

Vxy* = — 3Ty (X) -y = — 31 (X) -y

For any other choice of the curvg there are no T-Killing spinors

8. The spectrum of the Dirac operator

In this section we will study some properties of the spectsu) of the Dirac operator
on the hypersurface® 3., I" being a closed curve, so thmfi is complete. In general, the
Dirac operatoD on a Riemannian spin manifold?”, g) is an elliptic formally self-adjoint
differential operator of first order and, as a differential operator, closablé.isfcomplete,

D is essentially self-adjoint as an unbounded operatdfiE) with domainCgy®(M", %)
and the kernels ab andD? coincide, see, e.¢6]. HereL2(X) is defined as the completion
of C3°(M", X), the space of sections i with compact support, with respect to the norm
induced by the scalar product

(W1 ¥2) = /anl(x),wz(x»dM", i € CEM", 5).

One hasr (D) = o (D). If M" is completeg (D) is real and consists only of the approx-
imation spectrum since, in this cage,has no residual spectrum. If, additionall,” is
non-compact, one has to expect point spectrum as well as continuous spectrum; in particular,
we are interested in the essential spectrunbpivhich is defined by

oesd D) = {1 € C : there is a Weyl sequence foandD},

and represents the continuous spectrum together with the eigenvalues of infinite multiplicity.
The main result of this section will consist in showing that the infimum6D?) on
(M/:}:F, hy), wherel' is a closed curve andl € U(2), becomes arbitrarily small for arbitrary
values of the parameterand that Oc o (D); for I" arising by a Mébius transform from a
circle inC with center at the origin, we also show that ttiekernel of D and D are trivial,

thus obtaining G cesd D) in this case. As we use the global trivializati(8a) and (3h)

these results hold for the trivial spin structure.

Theorem 4. Let I' be a closed curve and the closure of the Dirac operator on the
hypersurface$M§r, h:), endowed with the trivial spin structurevherer = 0and A €
U(2). Then for arbitrary § > 0,

inf{A: 1 € o(D?)} <3,
and0 € o (D).

We will prove these statements by using the min—max principle. For this, we need the
following lemmas.
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Lemma 2. TheL2

ioc"kernel of D on(M2., hy) is non-trivial for arbitrary t andr".

Proof. With respect to the realization of the previous section one hag ferl" (X) that
dyr1(Ye) 1 0 —w?(Y)
Vy, ¥ = + (loghsz).
i <d¢z(Yk)) 4/h22 |: “\ w?(r0) 0

0 i) x1
+mmD“(m%m 0 )

i.e., Vy, ¥ = dyr (Y1) for everyy. Then dj; = Z?:l Yi(lﬂj)wi implies that the Dirac
operator o3 N M* is given by

Dy = iY1(y1) +1Y2(¥2) — Y3(¥2) n i 1 0\ (v
C\ —in@) +iY2(W) + Y3 | ovhzz \0 1)\ y2 )’

since

! <E+}(IogK) — (log D) )— 2
Vho \o 2 ¢ )" ovha

By taking ¥ = o/+/deth; = 1/20./h2> into account one obtains 0’?!,3: N M4, for the
Dirac operator, the system of partial differential equations

1 d 1 1
i Z 2 )y — | = ayn, 36
Vh22 [I<3Q+Q)I/I1 20 |1/f2} v (36)
1 0 1 1

i = 4= Y] = A\, 37
—h22|: I(8Q+Q>l/f2+2g ||1/f11| Y2 (37)

where
ad ad . a
21=0%+ DK — —riogK— — (r9rK + 2i)—,
as a0 ap
d ad 0
2 =0?+ 1)K — —rigK — — (rPorK — 2i)—.
as a0 ap
Let nowx = 0 andys be of the formy = v (0, s) = 0~y (s). Clearly, one has then
i(a+l)w( ) =i o( 1+1> 0
4+ )y =iy (-=+=) =
do o)’ ’ 02  o?
as well as

2
rc+129
—asyj(S)~

. 0 r}; 2 0
”’Q@Iﬂj(gy s) = —Eyj(s), (r*+ 1)£I/fj(9,s) =
Equating these expressions yields the relation

i(|o A)——}i(lo r’+ 1)
as 9vi) = 2 0s 9
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for y, so that by integration
1 2
|Og)/j=—§|og(r +1)+|OgC]

Puttingy; = (r? + 1)~Y/2C; one sees that all spinors of the form

)
ovVrZ+ 1\ C2

are harmonic orM% N M*, whereC; € C are constants. Since, further

/|w|2dM%=/ [y |2y/deth; ds A do A de
U U

for an open regionJ C M,% and det;; = 40%h2», the harmonic spinorss are in
(2). U

Ioc

Lemma 3. Let I and t be arbitrary. Then there exists aﬂfoc-harmonic spinoryg on
M3 N M*which can be approximated pointwise by spingrse L?(X)N T (X) depending
on a parametee > 0 such thatDy, € L2(X).

Proof. To begin with, note that/—S converges pointwise to/d+/r2 + 1 ast — 0, and
we therefore introduce the function

94(,,2 + 1)2

Se == — ,
T @A D2 eh2

>0,

replacing inS the parameterof the K&hler potential by the new parametgone computes

s %28 — 0%(r? +1)2’

RO e4)

()Fﬁ

A2 + 1)2 +e?’
as well as
217/ -8 =0, 21/ =8 =0

since(r? + 1S, s = rioSs . Each other function i ands of the functional dependence
0+v/r2 + 1is also harmonic with respect {8 and$2),. We put

= [ C1
Yo 1= /=S¢ g3 oV/ri+l (C ) , C; € C constant (38)
2
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Fore — 0 one has then

Ve 1 C1
SR/~ I Wl B

As remarked$2| v, = 0, 21y, = 0, so that

o= e e
2

vh a0
3edi ( 1 4 C1
_ 2 —3c%0/r24+1
= —ovVre+ 1) vV—=_S:€ .
ovh2 \0*(r? + 1)? + & ’ —C

Then one computes, sinee> 0,

_ged
1el2, = / (=S¢) €8V (Cy 2 402 dMd

00 Lr
- chf / (—Se)v/ deth, 9_684Q Vil ds Ado < o0,
0 0

whereC = |C1]2 + |C2|?, as well as

8

4 98
I DY |12, = / (=S &8 VL1012 4 | Col?) ho2?

1 z2
i ( W2+ DZted ¢ r2+1) M
Lr
_Zan f (—S,)/deth, e~ 8 evr+l
hzzQ
1 2
— — _oJ/r2+1) dsAdo
x (94(r2+1)2+84 evres ) s A e

i.e., they, areL2-approximations of.2_-harmonic spinors,

loc™
LAX)NT(Z) 3 Yo — Yo € L3 (D),
D, being inL?, too.

In the following we will use the abbreviations:

/21 98 1
pe 1= y/deth, e &VriHL qe = hzig2<

04(r2 + 1% + &4

2
-0 r2+1>
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for ¢ — 0 we then have that

J/deth,
0%(r’+1)’
pointwise. Lety, be as in(38). While ||, || ;2 becomes unbounded fer— 0, it does not
follow that || Dy ||, — O for smalle. Nevertheless, we will show that for givén> 0
ande small enough|| Dyl 2/1¥ell;2 < 8, thus provingTheorem 4 For this we have
to determine precise estimates for the Rayleigh quonle)wgniz/nwgniz from above,
where the point is to find bounds not dependingoon

—Sepe —> Sepeqs — 0

Proof of Theorem 4. Let ¢, be as inLemma 3 Eq. (38) One has

— 2v/20"(r? + 1)3
T @2 D2+ HT2A+ D2+ YA

0 Jhetn = 2202+ D)%% + D20 + 6e?) + 7o)
do 3 t= (04(r2 + 1)2 + %)5/2(04(r2 + 1)2 + t4)5/4 )
22
0>0 Sﬁ m

therefore— S, v/deth; is strictly increasing and tends ta/2/+/r2 + 1 asg — oo, so that
it seems natural to estimafe’. ||i2 from below according to

Lr 00 L
||Iﬁ£||i2=2ﬂC/0 /O (—S.pe) do A ds > 2nC/O inf = p (—Se/deth,)

oo
X / g Blovri+l do A ds.
P

HereP > Qisacutting pointto be determined in a convenient manner, such thatthe resulting
lower bound for||1//€||i2 is as great as possible. A possible choice would be the turning

point P, of —S.+/deth,, which can be calculated by the conditi(}nSm/deth,)’Qz =0
by solving the equation of third degreeid = o%(r? + 1)2

W2 4 e W2 + H[B0uZe? + 42:%%] = 5ul[r* (w2 + M2 + 1262 + 14)2).

Since this turns out to be a little bit involved and does not necessarily lead to optimal
estimates, we look for a condition ferinstead such that

9
0 < = (=S:/deth)|, <a <1, (39)
0

ie.,

[Q4(l’2+ 1)2]6/5[684(Q4(r2+ 1)2+t4) +t4(g4(r2 + 1)2 +84)]4/5

4/5
< (21\/2) @* %+ D2+ eH2(0*(r2 + 12 + 1%,
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This is fulfilled if

4/5
[*(r% + D2 (6e* + 1] < (;/_) [0*(r? + DAY5 (0% (% + 1)? + 1%,

where we assumed< ¢. For smalk andr this does not represent a much stronger condition.
Again this is assured if

4
4, .4
<M) < [Q4(r2 + 1)2]5’

a

and we put

_ 1 o 2J/2(6e% + 14
Pa = M(S’t’a)\/rz:_'_l’ Whereu(s,t,a) = 7

Then one calculates
in; (—Sg/deth;) = —S./deth;|p, = M (e, t,a)
o=F,
the functionM being given by
2v2u”
(1% + 232 + HUs

We remark that, as — 0, the functiong: andM tend to a finite value that is independent
of ¢, namely

1/4
. o 2/2¢4 _ V (2v/2/aty4

lim (e, t,a) = , lim M(e,t,a) =22 | —v—— ,
e—0 a e—0 5/(2«/§/at)4 +1

the cutting pointP, also remaining finite. We finally obtain an estimate ffgr, || ; > of the
form

Lr
1eli2, > 22C /0 inf (—S,./deti) / &80/ g, 1 di

e 684Pa/\/r2+1
NS N

Note thatM tends to 2/2 if, additionally,a - + — 0 so that the value of-S../deth,

at the pointP, becomes arbitrarily close to syp-S.+/deth,) = 2,/2/r? 4+ 1. This can
always be achieved by choosiagsmall enough, though for bigthe cutting pointP,
becomes big, too. Nevertheless, we will see that this is of no relevance for later argu-
ments. For smalt we do not lose too much by the above estimate, since theis also
small.

1
\/rz—i—l’

M(e, t,a) .=

=27 CM(e, t, a)f
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We turn now to estimatinngbgniz. First, one has

\‘y42—124
S, qe /Bty = 9v/2:803(r2 4 1) YO DT

(0%4(r2 + 1)2 4 g%)3/2

1 2
X (——Q\/rz—i—l) < 00,

*(r2+ 1% + &4

and we set

A2 = ¢ ! —oVr?+1 i
C 02+ D2+ e \o*(r2 + D% + & ’

Vor(r? + 12 + 14
Vo2 + 12+ 6%

which yields— S, ¢, ~/deth; = 9v/2¢8AA2. The functionA vanishes only fop = 0. The
zeros ofA arep = 0 and the solutions of the equation of fifth degreein

A=0(%+1)

oVr2+1%?* + )% +eH —1=0. (40)

Now o+/r2 4+ 1 becomes zero fag = 0 and is strictly increasingo®(r? + 1)2 + r*)~1

is equal tor=* for o = 0 and strictly decreasingq. (40)has therefore, exactly one real
solution; it is positive and will be denoted in the following i@, Note thatQ is greater
than 0 and bounded from above bwGZ + 1. Since—S.g.+/deth, is non-negative and
(—Seqev/dethy) o = V28 A(2AA ,+AA L), the numbers 0 ang are the only absolute
minima of —S.qg+/deth,. The absolute value ot can then be estimated according to

0 1

|Al= —oVri+1
0*(r2+ 1)2 + &% [0*(r? + 1) + &
2 2 1
O for 0 > Q,
- 0*(r2 +1)2 4 ¢4
e for o < Q.
(Q4(r2 + 1)2 + 84)3/2 —
The relation
3 0>V/rZ+1 20e*VrZ+1 0
_ = >
d0 04(r2 +1)2 4+ 4 (0%(r? + 1)? + £4)%/2
as well as
0VrZ+1 1

sup =
o Vorr2+12+6% JrZ+1
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imply the estimate

1
Al < for o > Q.
NI €
In a similar way one sees by
d o _ et — 5Q4(}’2 + 1)2
Ao (Q4(r2 4 1)2 4 84)3/2 - (94(r2 4 1)2 4 84)5/2’

thato(o*(r2 + 1)2 + ¢*)~%2 has a maximum aimax = ¢/v/5v/r2 + 1 with

0 _ 1
(Q4(r2+l)2+84)3/2 lomax - 85«4/5(6/5)3/2 /2 +—1,

and we obtain the estimate

|A| for o < Q.

1
<
T e565/55/r2 + 1
Now A tends asymptotically te/r2 + 1 asg — oo and one computes

2Dt + (2% — 10 (r? + 1))
3Q - (Q4(r2 + 1)2 + 84)3/2(Q4(r2 + 1)2 + t4)3/4’

sothatfor 24 < r* one seesthat has amaximum at,,,, = (st/v/1% — 26%)(1/v/r2 + 1);
otherwise it is strictly increasing. Insertigg,,, in A we obtain

t
A, = V2 +1-N(e, 1),
&

whereN (¢, 1) := t/(v/2¥1% — £%), and thus, for4, the estimate
2+1 for 2¢4 > 14,

A< t
VrZ+ 1IN, 1)— for 2% < 14,
&

As e — 0, the functionV tends to ¥+/2. Summarizing we find that, under the assumption
that 2% < r*, —S.q./deth; can be estimated from above according to

V2N (e, 1) -
E—— )

1 for 0 > 0,
+
_Seqe/deth; = 9v2:8an2 < Y
9V2N (g, 1) t
——F————5 foro=<o,

K22+ 13
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wherex := /65/5°; finally we obtain for| Dy ||, 2, assuming to be small, that

Lr
1Dl <2nC [ sup(-S.q./deth) / e VP dp A ds

0 0=0
Lr
+27TC/ sup(— SECIE\/M)/ e76ge Vritl do A ds
0 o020
5 fLF OV2N(e, )t [ 1 1-—e60e*Vr2+1 7e—6Q84«/r2+1
=2nC ’ +¢
0 ViZr1 k%3 eetVr211 6e4v/r2+1

Under the assumption that®2 < ¢4, we obtain the estimate

” Dw&‘ ”22 9\/§N(8, t)t (8_3,(_2(1 — e_6Q54\/ r2+1) + 87 e—6Q£4«/ r2+1) ds
L <
||¢8||i2 T Met,a) fe_epasztmds

for the Rayleigh quotient. The expression

GQs r2+1

_Z_( 60 e 1)ke%-3

tends to zero as — 0, so that the Rayleigh quotient itself becomes arbitrarily small for
¢ — 0. Since for closed curvel the hypersurfaceM;’i are complete, boti® and D? are
self-adjoint, and by the min—max principle, see, €4], one has

1Dy 12,

inf{A:1eo(D?)}= inf —L,
orpend?) Y12,

since D? is bounded from below. The domain of definition of the closiiref the Dirac
operator is given by

D(D)={y € L?(X) : Jaseries),D(D) : y,— v andD;, convergesin £(X)},

and in casey € D(D) N I'(X), one hasDy = Dv. The first assertion of the theorem
then follows by noting that the inequalitigs| v |2 dM3. < oo, [ | Dy [|2dM3 < oo and
[I1D?y2dM3 < oo imply thaty, lies in D(D) andD(D?), respectively, sincé/?. is
assumed to be complete. To see thispgte M,% be fixed andu(x) : R — [0, 1] be the
function defined in29). Following [6] we put

dist(p,
bn(p)::u,<2—y>, n=12..., peM}:.

Thenb, = 1 on B,(po) and supp,, C B2,(po). Further, one sees tha} is Lipschitz
continuous and, hence, almost everywhere differentiable \itdb, |2 < M/n?, where
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M is a constant. SincM,S_ is complete, the closed envelopes of the geodesic Ballgo)
are compact i3 and therefore
Yn i= by € D(D) = C (M3, 3).

Since|| ¥ ||7, < oo, one hagy, — ¥ in L2(X). Inthe same way Dy |2, < oo implies
with the relationDv,, = b, DV, + gradb,, - ¥, thatDy,, — D, in L3(X).
Consequently, one obtaing. € D(D), and in a similar wayDy, € D(D). Finally, by
settingy, = Ve/ll¥ell 2, we Obtain a sequence of element®ifD) NI (X)ofunitlength
for which ||D¢r8||Lz — 0 ase — 0, which implies that G crappmx(D) = o (D). O

In the following, we will study thel.?-kernel of the Dirac operator in case thatis a
circle inC with center at the origin and radius= rg. Letp = ¥ (s, 0, ¢) € M,% N M*and
7z =€7 e §1. As explained irSection 5in this case

K, MEN MY — MEn M4, k. (p) =¥ (s, 0, (p + 1) mod 21),

pe s MENM* — M3 M2 w-(p) = ¥((s + ) mod 2tr, 0, ¢)
represent two isometrig!-actions oM 2 N M. Putting

(k) (p) == Y (k-1(p)) and (u ) (p) = ¥ (n,-1(p))
one obtains two continuous unitasy-representations ih2(X), since by the invariance of
the volume form undet, andu . the equality

[t ot ant o = [ W emn e @,

0. ¥ € LA(2),

and a similar one fogr, hold. Then, by the theorem of Stone, there exist uniquely determined
self-adjoint operatord/ and M, such thatcg. = é™M, Mgt = = ™1, They are given by
M =id,, M1 = id,, while the corresponding eigenfunctions are determined by

|i eiot(p = —q eim/)’ Ii eioz(ﬂr — _,B(pl" eiﬁ(p["
dg as

wherea andp are integers angdr = ¢/r, ¢ = +1. Because oD|, = D« (p) = Dju.(p):

the operatoD commutes with¢, and ., so that each of the eigensubspaggsf D and

D corresponding to the eigenvaluedecomposes into the eigensubspaces of the unitary
(s1 x s1)-action according to

Ey = oM., @1},
a.p
in concordance with the spectral decomposition of the operafoasid M1; in particular,

one has Key2(D) = @q sHy ® Hg. A general solution of the Dirac equatidiy = Ay
on M3 N M* can then be written as a product of the form

U (s, 0, 0) = €29 PrOR(g), (41)



P. Ramacher/Journal of Geometry and Physics 44 (2003) 407-474 465

whereR is a function ofp. Thus, the system of partial differentiedjuations (36)eads to
a system of ordinary differential equations

1 |:i ( 9 +}> R1— 'Q (2 +DKBgr — (r2¢FK+2i)a)R2] AR

h22 30 ' 0 20
1 [ i(a—i-l)R—i- | ((r° + DK Bor — (rPorK — 2i) )R} AR (42)
—= || 5ot ) Rt~ ((r ¢r — (r°grK —2e)Ry | = AR>
Vh22 do o 20
for the radial functionR (o). Introducings := ((r> + 1) — r?a)¢r /2, we put

5K — i 3K + i

f = , g = ,
0 o

and make the substitution

&/ Vizzde gy o)
x =Co , ,
e -/ Vhz2de R, (g)

so that one obtains for the system of differential equations

d (Xl) 1 (Xl) iAvh22 0 <X1>
—_ i +
do \ 2 ¢\ x 0 —iavhao | \ x2

g [ Vh22de 0
+Co
0 g1 [ Vhazdo

—1/0 —iAvh22 f (R1> 0o f (Xl)
X —
g —1/0 +iAvho2 Ro g 0 X2

with f = 24/ Vhede § & .— g2 [Vh22de g Note that

2 1 2 4..2 12
/ iz do = (r*+ Do <1+Q (rt4+ ))

V2004 (r2 + 12 + 14

1/4

114 o*2+12
243 t* '

If o« or g are different from zero, neithef nor g vanish; differentiating again gives

(Xl),QZ = f,g)(Z + f(XZ),Q = (IOQ f),Q(Xl),Q + ngL

(X2) 02 = .ox1+ &(X1).0 = (1093) o (x2).0 + fEx2.
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and one obtains the differential equations of second order

d? d

$5 @+ P@) (@) +a(@ @) = 0. (43)
o o

d? d

T2@) + Fo) () +a(@)x2@) = 0. (44)
o o

where
P@ =52 _oihm g = —%(521(2 +a?) <0.
o) 0K —ia 0

If one putsyz = f‘l(m),g and x1 = g—l(xz),g, respectively, each solution ¢#3)

or (44) corresponds to a solution of the above system of differential equations fae.,
solving the latter system of two differential equations of first order is equivalent to finding a
solution of the differential equation of second or{48) or (44). The latter are differential
equations of Sturm—Liouville type and our next goal will consist in showing that, fer0

anda # 0, they cannot have any bounded solutions and, in particular, that they do not lead
to L2-integrable solutiong” of the Dirac equation. For this purpose, we will make use of
the following theorem proved by Hartmhl].

Theorem 5 (Hartman). Let | be an interval inR and w(x) a solution of the differential
equation

wx) + pwx) +gx)wx) =0, xel
with continuous complex valued coefficients p and q. If
Re[-¢(x) — 3lp(0)IF] = 0, (45)

thenr(x) = |w(x)|? is concavei.e., #(x) > 0.

Now, in our case one computes

Rep(g) = 1( + 5= 1 5K, 1 1 1 8%KK,
PR =Pt = " o \sK—ia ' 5K +ix) o 82K2+a?’
1 sK 1 1
Im =—(p—-p) =—-——22 — — | — 20k
r( 2|(p P) 2i <5K —lae 5K+ Ia) 22

§K
ke 20/ h22,

T K2 +a?
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and thus
@ 1| 0P 1 52K2 4 o 1 82K2(logK) o
_ _ = - a2 = g2 VEYR e
q0 4 pLe Qz 4 82K2 4 2
1 log K MW F2+ DK
x - ( g ),Q _ o (r + ) _ )\(2(,,2 + 1)K
20 4 5K
Because of
1 (ogK), 1 4
_——_—m—_—m— - — 1 _— >
20 4 20 04(r2+ 12 414

one recognizes that, for = 0 anda # 0, the condition(45) is fulfilled for the differ-
ential equations (43) and (44yvhile for A # 0 the expressior-¢(0) — |p(0)|?/4 tends
asymptotically to—212(r2 + 1) for o — oo. Fora = 0 anda = 0, it becomes also
negative ap — 0. As a consequence of the preceding theorem we obtain the following
lemma.

Lemma 4. Assume that = 0 anda # 0, and letyy, x2 be solutions of the differential
equationg43) and(44), respectively. Thety1|2 and|x»|2 are concave

We are now in a position to prove the announced theorem.

Theorem 6. Let I' be a circle inC with center at the origin and radius = rg, andy a
spinor on(M13_ N M*, h;) of the form(41). If v is a solution of the Dirac equation with
respect to the trivial spin structure corresponding to the eigenvalue 0 and ifa # O,
then||y (|7, = oc.

Proof. Let Dy = 0 anda # 0. By our previous considerationg = CoR1(p) satisfies
the differentialequation (43and we consider its continuation

d2x1

dz?
to the whole complex domain. Far # 0 both p(z) andg(z), z € C, are meromorphic
functions with poles of firstand second orders at zero, respectively. The diffeemqigion
(46)is therefore, of Fuchssian type and zero is a regular singular poinglsety1 2 form
a fundamental system of solutions(db); they can be expanded around the origin into the
uniformly convergent series

o o0
x11(2) = 2 (1 + Zanz") . xa2(2) =z (1 + anz") :
n=1 n=1

wherea,, b, are constants and, ¢; are the roots of the equation

d
(z) + p(z)dizl(z) +q9()x1(z) =0, zeC, (46)

2+ (p°—De+4¢°=0



468 P. Ramacher/Journal of Geometry and Physics 44 (2003) 407-474
with
qo = ”ng>0 qu(Z), PO = Iimzao ZFXZ)’
see, e.g[23]. One obtaing; + ¢2 = 1 — p°, e160 = ¢°, which yields in our case that

e14+6=1—1=0,e160 = —a?, and hence; = a, ¢ = —«. Evidently, analogous
considerations hold fogz = CoR2(0), too. Now,

||¢||§2=/ 1y (s, 0, @) 17 dM}

2r 00 2nr 1 5 )
=/O /O/O 51 + lr2()/y/deti ds A do A dy.

In order that the above integral remains bounded it is necessarlyitiai|? and| x2(0)|?
decrease with order greater than 1 for oo, since

1 8o(r+1
—/deth, = fg(r + 1 ~ constant

02 Vor(r2 4+ 1)2 4+ 14

therefore|x; (0)|? < 1/0,i = 1, 2, must hold for large. As, moreovet,x; (0)|? is smooth,
there exists @g such thaf| x; (QO)IZ),Q < —1/Q§ < 0. However, byt emma 4one has that
| xi (g)|?g is monotone increasing so that

d 1
—Ixi(@I?<—— <0 forall ¢ <o
dQ QO

must hold. Consequently; (0)| is monotone decreasing and strictly monotone decreasing
for o < po. Let us now assume that= 1, 2, ... without loss of generality. Ij (o) is not
identically zero, it follows that, in a neighborhood of the origin, its compongntnd x»
must have the developments

o0
xi(0) = Ajo™ [l+ 2629”} ,
n=1

where A;, c,i1 are constants; otherwise one would hdyg (O)|2),Q > 0. Let nowp; be
sufficiently small so thax1 and x> can be developed as above and, in particular,

ZRec;Q" <3 forall o < 01.

n=0
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Then

2t po1 p2ur ) 3
/ / [ 1 (s, 0, p)II” dM -
0 0 0

2 2
01 s . > 4
:47{2}"/0 o 2@+D Z Al-2 <1+ Z Red&") + (Zlm c,llg”> Vdeth, do
n=0

i=12 n=0
Q1
> 12r(A2 + A9) / 0~%@*D /deth, do
0

8(r2+1 o1
V82 +1) / 021 gp
J03(r2 + 1)2 + 14 /0

v

72r (A2 + A2

logolg! = oo, o =1,
= —2(a-1) |9
Q _ _
L | =00, a=23....
—2(a—-1)
and hence{y/ |2, = oo. O

We turn now to the remaining case @f= 0. If ¥ (s, 0, ) = eiﬁWR(g) is a harmonic
spinor onM,% N M*, the components of = oR(p) satisfy the differentiabquations (43)
and (44) respectively, where

1 ) ) SK\?
p=——(ogKk),, g=—f=-g¢g=—(—1) .
0 0

i.e., for x1 and x2 one obtains the differential equations

d2y; dy;
7@+ P 5@~ fA@x) =0,
Q o

and these can be integrated explicitly. Indeed, putting

Xi(Q) = B; € AreSIMeUE4 /%) tT;(QZ(VZ + 1) + /04 (r2 + 1)2 + 14)°

one verifies that

d i 1) i 1 4, 3,2 1 2
i(Q): xi(0) ZQ(r2+1) L1 03(r2 + 1)
do ™" 020241 + Vo7 + D2+ 14 N LA T
2002+ 18 B
T oA+ 1)2+t4x(9) = f@)x (0,

dz)(,' 2 1 2
d—Qz(Q) = (f @+ f (—5 + (log K),Q>> xi(@) = (f(e) — f@)p(e))xi(o).
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We continueyr to a spinor onM,% by settingyr = 0. Let nowgr = 1/r andg =
—1,-2,...,sothats = (r2+ 1)B/2r < B < 0. Then one computes

B2+ B2 V8o(r? + 1)
/ Iy (s, 0, 9)II> AM} = 4n?r 22 | —
! 0} + 12414

25
x (Qz(i’z +1) + m> de < oo,

so thatyr L2(M;°i). Neverthelessy is not smooth ap = 0, so thaty ¢ D(D). Thus we
have completely determined tiie&-kernel of the Dirac operator in case thatis a circle
in C with center at the origin and obtain the following theorem.

Theorem 7. Let I" be a generalized circle i€ that arises by a Mdbius transform from a
circle in C with center at the originand D the Dirac operator oriM 3., h;) with respect to
the trivial spin structure. Then

Kerp2(D) 3 ) = ﬁz—?—z,...HO ® Mg, (47)

while, on M%, the L2-kernel of the Dirac operator and its closure are trivial. In particular
0 € oLy D).

Proof. Let I" be a circle inC with center around the origin and radius= rg. Without loss
of generality we can assume thgt = 1/r. Forg = —1, —2, —3, ... and by the previous
considerations

1/f5 (s 0 Q) = éﬁl eﬁarcsinhQZ(r2+1)/,2) By
o B>

gper § (B
=— <Q2(r2 + 1 +,/0* 2+ 12 + t4> ( )
ot B>

are harmonid.?-spinors onM3 N M*, wheres = (r2 + 1)8/2r, B; are constants and
Vg, = 0. By Theorem Gapart from the trivial representation no other representations of
the S1-actionk, can occur in thé.2-kernel of the Dirac operator and we obt&T)in case
thatI” = 9B(0, r). The general statement then follows from the fact W!ét and Mir

are isometric forA € U(2). If, further, v € L2(X) is a harmonic spinor with respect to
D, then the regularity theorem for solutions of elliptic differential equations implies that
¥ € I'(X). However, since alL.2-harmonic spinors have to be linear combinations of the
¥, which, nevertheless, are not regulapat 0, the L?-kernel of the Dirac operator and

its closure turn out to be trivial. Since, Biheorem 4 zero belongs to the spectrum bf

it follows that O oy D). O
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9. On the spectrum of the Laplacian

In this section we will continue the study of the Laplacian on the hypersurfoEs
which we began irBection 6 Unlike the Dirac operator, the spectrum of the Laplacian on
an open complete manifold is related to the underlying geometry in a much more intrinsic
way. Thus, lower bounds for the Ricci tensor imply upper bounds for its smallest spectral
value, and by studying the geodesic flow and the exponential growth of the manifold one
obtains statements about the infimum of the essential spectrum of the Laplace operator and
vice versa.

Operating on functions, the Hodge—Laplace operator and the Bochner—Laplace operator
coincide, and we havet = V*V : C®(M3) — C*®(M32) on the hypersurfaces/3;
further, sinceM% is complete for a closed curvE, A is essentially self-adjoint as an
operator inLZ(Mlsl) with domaincgo(Mﬁ), where the domain of is given by the Sobolev
space20(M3) = H?(M32). One hag (A) = o (A). Now, for the smallest spectral value
of the Laplacian the following proposition holds in general (see,[5]Y.

Proposition 18. Let (M", g) be an open complete Riemannian manifttéd components
of the Ricci tensor being bounded from belowky — 1) C, whereC > 0.Then the smallest
spectral value of the Laplacigng(M™) satisfies

po(M") < z(n — 1)%C.

Hence, as an immediate consequence we obtain the following statement.

Corollary 5. LetI" be aclosed curve ii. Then the smallest spectral value of the Laplacian
on the hypersurface@/3 ., h,) satisfiesuo(M3 -) < 172, wherer # 0and A € U(2).

Proof. By Theorem 1R11 > R22 > Rs3. Further, sinceRsz is strictly increasing one has
that inf, R33 = Ragjo—0 = —2/1? so thatRj > —2C, whereC = t~2. The assertion then
follows from the proposition above. O

In the sequel we will proceed to find estimates for the infimum of the spectrum of
on the considered hypersurfaces by using again the min—-max principle, and show that it
becomes arbitrarily close to zero for any closed cufyeso thatuo(Mf;F) = 0, where
A € U(2). Since, byCorollary 4 this estimate gives also an estimate for the infimum of
the essential spectrum, we are in position to compute the exponential groMlj‘: fufr an
arbitrary closed curve, thus generalizing the results previously obtairgetiion 5 since,
as already mentioned, the infimum of the essential spectrum of the Laplacian is closely
related to the exponential growth of the underlying manifold. More precisely, the following
theorem proved by BrooK8] holds.

Theorem 8(Brooks). Let (M", g) be an open complete manifold of infinite volume. Then

|nf O’esiA_) = %Mgo.
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Consequently, the exponential growth of the hypersurfadésmust be zero for any
closed curvd™. Let us now prove these assertions.
First note that fop € H2(M3),

/((p, Ap) dME = /(w, Vo) dm3
holds, wherg-, -) denotes the scalar productdﬁ’o(Mfﬂ) and

(Vo. Vo) =Y (Vy,p. Vy,p) = »_YZ(p) = |grady|?.
By the min—max principle we have

[ Igradf2dm3

inf o (A) = i
o£fend) [ |f12dM}

(48)

Now we consider the function

2
e = V2 e >0,

o 04r2+ 12+ P

which is derived from the tracg of the second fundamental form, and by means of this
function we generate estimates tid A).

Theorem 9. Let I be a closed curve i and A the closure of the scalar Laplacian on
(Mf;r, hy), whereA € U(2). Then for arbitrary § > 0,

inf oesd A) < 8.

Proof. By Corollary 3 $¢ is L2-integrable ovetMﬁ for @« > 3/2. One computes further
that

1 9 2 o/ 1 @l +1)2
Y1(H%) = —— — =- € He,
Vh2200 \ \/o2(r2 + 1)2 + &4 Vh22 04(r? + 1)2 + &4

the derivatived»(H%) andY3(9H%) being zero so that

aZ 4(r2+l)2
Tgrad?[? = Y20 = 5 b 040+ 17 4 140,
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Fora = 2, and assuming < ¢, the monotony of the integral implies

3,2 1
/ﬁ?dM%:B\/@ﬂ/ "+ 1) ds A
@42+ D2+ eHV(r2 + D2 +14

3/,.2
0>(rc+1)
28\/57[/(Q4(r2+1)2+84)5/4dSAdQ

L 1 >

- 8«/§7T /0 |:_ (1+ r2)(Q4(r2 + 1)2 =+ 84)1/4]0 dS

NG /L 1
0

ds.
€ R

Similarly, under the assumption thak ¢, one computes

radH22 dM3 = 16v/8 QD 171 A A d
|g al r — 7T (Q4(7‘2+1)2—‘r84)3 o (}" + ) + 0 )

7(,.2 3
o'(r*+1
516\/§nf 2T D2 A do A ds

L 4,2 2 4 oo
=16\/§n/ ([ "+ )7 + 4 } )ds
0 0

21(0%( 2+ )2+ eHTAG2 + 1)

ds,

_ewén/L 1
213 Jo 24D

showing thaﬁﬁg € D(A). Summing up we have
[ Igrad$22dm?
[HdmE T 212

using (48) one then obtains the stated bound from above for the essential spectrum of
the Laplacian since, bforollary 4 zero can be nd.2-eigenvalue ofA and, hence,
of A. O

forall 0 <t < ¢;

Corollary 6. Lettr > 0 be arbitrary andA € U(2). Then for any closed curvg in C,
(Mf;r, hy) has subexponential growth

Proof. This is a consequence dheorems 8 and.9 O
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