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Abstract

We study the geometry of families of hypersurfaces in Eguchi–Hanson space that arise as com-
plex line bundles over curves inS2 and are three-dimensional, non-compact Riemannian manifolds,
which are foliated in Hopf tori for closed curves. They are negatively curved, asymptotically flat
spaces, and we compute the complete three-dimensional curvature tensor as well as the second fun-
damental form, giving also some results concerning their geodesic flow. We show the non-existence
of Lp-harmonic functions on these hypersurfaces for everyp ≥ 1 and arbitrary curves, and deter-
mine the infima of the spectra of the Laplace and of the square of the Dirac operator in the case of
closed curves. We also show that, in this case, zero lies in the spectrum of the Dirac operator. For
circles we compute theL2-kernel of the Dirac operator in the sense of spectral theory and show that
it is trivial. We consider further the Einstein–Dirac system on these spaces and construct explicit
examples ofT -Killing spinors on them.
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1. Introduction

In this paper, we shall study certain families of hypersurfaces in Eguchi–Hanson space
that arise as complex line bundles over curves onS2 � C∪{∞}. They are three-dimensional,
open, asymptotically flat Riemannian manifolds of non-positive scalar curvature which, in
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case of a closed curve, are foliated in Hopf tori. We describe their geometry in detail, com-
puting the complete three-dimensional curvature tensor as well as the second fundamental
form, and give also some results on the structure of the geodesic flow. Since an explicit
description of the geometric properties of these hypersurfaces is possible, we are able to
make precise statements about the spectra of the scalar Laplacian and the Dirac operator
and also about the existence of solutions of spinorial field equations. In particular, we show
that there are noLp-harmonic functions for everyp ≥ 1 and arbitrary curves, and that for
curves arising by Möbius transforms from closed curves the spectra of the scalar Laplacian
and the square of the Dirac operator come arbitrarily close to zero, implying that zero lies in
the spectrum of the considered operators. In the mentioned case, it also turns out that zero
lies in the spectrum of the Dirac operator. In case that the considered curves are generalized
circles inC that arise by Möbius transforms from circles inC with center at the origin the
L2-kernel of the Dirac operator in the sense of spectral theory can be computed explicitly
and we show that it is trivial. As it turns out, these hypersurfaces do not admit solutions
to the Einstein–Dirac system; such solutions can only be obtained by deformation into a
singular situation. Nevertheless, we can construct explicit examples ofT -Killing spinors,
which are solutions of a generalized Killing equation for spinors.

Hopf tori have been extensively studied, see, e.g.[24], and where first considered by
Pinkall [19]. If π : S3 → S2 denotes the Hopf fibration, the inverse image of any closed
curve inS2 will be an immersed torus inS3, which is called aHopf torus. Using Hopf
tori, Pinkall showed that every compact Riemann surface of genus one can be conformally
embedded as a flat torus into the unit sphereS3. As a further application, and using elastic
curves inS2, he constructed new examples of compact embedded Willmore surfaces inR3,
which are extremal surfaces for the Willmore functional

∫
H dA, whereH denotes the mean

curvature.
The Eguchi–Hanson metric is a four-dimensional metric, which can be constructed in

the total space of the fibrationp : T ∗P1(C) → P1(C) � S2, and since its holonomy is
contained in SU(2), it is Ricci-flat and self-dual. Both the Hopf fibrationπ and the projection
p are compatible with the action of U(2) in C ∪ {∞}, and, like the standard metric inS3,
the Eguchi–Hanson metric is invariant under this action. Therefore, its restriction to the
three-dimensional projective spaceP3(R), which is immersed inT ∗P1(C) as the set of
all cotangential vectors of unit length, corresponds exactly to the standard metric inS3.
For this reason the projectionp is a geometric extension of the Hopf fibration, and the
preimage of any closed curve onS2 under the projectionp gives rise to a three-dimensional
non-compact Riemannian manifold foliated in Hopf tori. Its end is of topological type
T 2×(0,∞)/{±1}, whereT 2 is the two-dimensional torus. Nevertheless, the corresponding
Willmore functional turns out to be unbounded, so that the considered hypersurfaces are
not accessible to integral geometry. The interest in Eguchi–Hanson space itself originates
from a result of Schoen and Yau[20], who proved that a complete asymptotically Euclidean
four-manifold whose Ricci tensor vanishes is necessarily flat. For Ricci-flat asymptotically
locally Euclidean (ALE) Kähler metrics this turns out not to be true, the first example of
such a metric being given by the Eguchi–Hanson metric[4].

We give now a description of the main results of this work.Sections 2–5are concerned
with the geometry of the hypersurfaces studied,Sections 6, 8 and 9with the spectra of
the Dirac and the Laplace operator, whileSection 7is devoted to the study of spinorial
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field equations. The Eguchi–Hanson metric is described inSection 2: it depends on a real
parametert > 0, thus giving rise to a one-parameter family of Riemannian metricsgt .
These metrics become degenerate along the zero section in case thatt = 0. For any curve
Γ (s) = r(s)eiϕΓ (s) in C ∪ {∞} � P1(C), we consider its preimageM3

Γ := p−1(Γ ) and
obtain a family of hypersurfaces(M3

Γ , ht ), where we assume thatΓ (s) is parameterized by
arc length andht denotes the induced Riemannian metric. Each of these hypersurfaces is a
complex line bundle overΓ , and introducing the polar coordinates� andϕ in each fiber,
we obtain a parameterization ofM3

Γ outside the zero section by the coordinatess, �, ϕ, see
Section 3. Since the coefficients ofht do not depend onϕ, the correspondingS1-symmetry
is an isometry. We determine the inner geometry of the hypersurfaces and inTheorem 1, the
complete Ricci tensor is computed with respect to an orthonormal frame, one eigenvalue
being positive, one negative and the third one becoming negative at infinity, yielding, for
the scalar curvature, the expression

S = − �4(r2 + 1)2

(�4(r2 + 1)2 + t4)3/2 .

It is negative and tends to zero for large� andr with the order 1/�2(r2 + 1). For t �= 0,
S remains regular at� = 0, i.e., the scalar curvature vanishes on the zero section. In
Section 4we turn to the study of the Levi-Civita connection of the Eguchi–Hanson space
and determine the second fundamental form of the hypersurfacesM3

Γ with respect to the
above orthonormal frame, thus obtaining

II ∗ =




0 0 0

0 0
K

4�

√
K

r2 + 1

0
K

4�

√
K

r2 + 1
H



,

see Theorem 2and Corollary 1, where K is the function,K = 2�2(r2 + 1)2/√
�4(r2 + 1)2 + t4 andH denotes the mean curvature. It is given by the geodesic curvature

kg of Γ as a curve inS2 according to the formula

H =
√

2√
�4(r2 + 1)2 + t4

kg.

This appears to be natural, since the geometry of the vector bundleT ∗P1(C) is determined
by the elliptic geometry ofP1(C) � S2. The above formula also implies thatM3

Γ is a
minimal surface if and only ifkg = 0, i.e., if Γ is a great circle inS2. Further, since the
function�2(r2 + 1) corresponds to the distance inT ∗P1(C), both the scalar curvatureS
and the mean curvatureH, as well as the components of the Ricci tensor and of the second
fundamental form, are manifestly invariant under the action of the isometry group U(2).
Section 5contains some results concerning the geodesic flow of the hypersurfacesM3

Γ . So,
in caseΓ is a circle inC with center at the origin, we are able to compute the distance of a



410 P. Ramacher / Journal of Geometry and Physics 44 (2003) 407–474

point inM3
Γ to the curveΓ ⊂ M3

Γ , i.e., to the zero section, seeProposition 10, and, in this
way, to calculate the exponential growth ofM3

Γ explicitly.
In Section 6the vanishing of theLp-kernel,p ≥ 1, of the scalar Laplacian on the hyper-

surfaces(M3
Γ , ht ) is proved for everyt ≥ 0 and every curveΓ by showing the existence

of a canonical exhaustion function on the considered hypersurfaces, seeProposition 13and
Corollary 4. The result then follows from the work of Greene and Wu[10], who studied inte-
grals of certain generalized subharmonic functions on connected non-compact Riemannian
manifolds admitting such a function, and showed that these integrals cannot be bounded.
For the smallest spectral value of the scalar Laplacian we obtain, inSection 9, the first
estimate

µ0(M
3
Γ ) ≤ t−2, t > 0,

whereΓ is a closed curve, seeCorollary 5, since by general theory lower bounds for the
Ricci tensor of open complete manifolds imply upper bounds for the smallest spectral value
of the Laplace operator[5]. By using the min–max principle we are then able to determine
the infimum of the spectrum of the closure of the Laplacian∆̄ on (M3

Γ , ht ), obtaining

inf σ(∆̄) < δ

for everyδ > 0 and arbitraryt > 0 and closed curvesΓ . Since, byCorollary 4, zero can
be noL2-eigenvalue, we therefore get that zero lies inσess(∆̄), the essential spectrum of
∆̄. A result of Brooks[3] then implies that in this case the hypersurfacesM3

Γ must be of
subexponential growth, generalizing the previously obtained result.Section 7is devoted to
the study of spinorial field equations. In[8], Friedrich and Kim showed that in dimension
3 the existence of a solution to the Einstein–Dirac system is equivalent to the existence
of a so-called weak Killing (WK) spinor. For the existence of such a spinor geometric
integrability conditions that are independent of the considered spin structure are known,
and we show that, fort > 0, these conditions can never be fulfilled, implying that there
cannot be any solutions to the Einstein–Dirac system on the hypersurfaces(M3

Γ , ht ) for any
t > 0 and any curveΓ , seeProposition 15. Nevertheless, such solutions can be constructed
explicitly with respect to the trivial spin structure in case thatt = 0, the manifolds considered
then being no longer complete. As remarked above, the Eguchi–Hanson metric is self-dual
and, due to this, there is a parallel spinor on Eguchi–Hanson space. By restricting this
spinor to the hypersurfacesM3

Γ ⊂ T ∗P1(C) we show inProposition 17that there exists a
T -Killing spinor onM3

Γ if and only ifM3
Γ is a minimal surface. The spectrum of the Dirac

operatorD is studied inSection 8. There we show, by estimating the Rayleigh quotient
from above and using again the min–max principle, that the infimum of the spectrum ofD̄2

on (M3
Γ , ht ) becomes arbitrarily small,

inf σ(D̄2) < δ,

whereδ > 0 andΓ is a closed curve, seeTheorem 4, t > 0 being arbitrary; here the involved
spin structure is again the trivial one. In this case it also follows that 0∈ σ(D̄), by explicit
construction of an approximating sequence. In case thatΓ is a circle inC with center at
the origin, an isometric (S1 × S1)-action is given and theL2-kernel of the Dirac operator
and of its closure decompose into the unitary representations of this action according to
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the spectral decomposition of the corresponding generators i∂ϕ , i∂s , and with respect to the
trivial spin structure one obtains

KerL2(D|(M3
Γ \Γ )) = ⊕

β=−1,−2,...
H0 ⊗Hβ,

while onM3
Γ theL2-kernels of the Dirac operator and its closure turn out to be trivial. Thus,

in this case, 0∈ σL2

ess(D̄). SinceM3
Γ andM3

AΓ are isometric for everyA ∈ U(2), statements
for a particular curve inC ∪ {∞} can be generalized to curves that arise from it by Möbius
transforms.

2. The Eguchi–Hanson space(T ∗P1(C), gt )

LetG be a finite non-trivial subgroup of U(m) that acts freely onCm \ {0}. ThenCm/G

carries an isolated quotient singularity at zero and any resolution(M, π) of Cm/G is a
non-compact complex manifold. A Kähler metricg onM is said to beasymptoticto the
Euclidean metrich on Cm/G if there is a smooth surjective mapf : M → Cm/G such
thatf−1(0) is a connected, simply connected, finite union of compact submanifolds ofM

andf induces a diffeomorphismM/f−1(0) � (Cm/{0})/G. Under this diffeomorphism
f∗(g) should satisfy

f∗(g) = h+ O(r−4), ∇f∗(g) = O(r−5), ∇2f∗(g) = O(r−6) (1)

for larger, wherer is the distance from the origin and∇ the flat connection inCm/G. Such
a metric is called anALE metric. Notice that the topological type of the end is given by a
quotient of the Euclidean space. In the following we will mainly be concerned with the case
of m = 2.

In [20], Schoen and Yau proved that a complete asymptotically Euclidean four-manifold
whose Ricci tensor vanishes is necessarily flat. Nevertheless, a similar statement for Ricci-flat
ALE Kähler metrics does not hold, since, as mentioned, the topology of the end differs from
the topology of Euclidean space. An important class of Kähler metrics which give rise to
Ricci-flat ALE spaces is given by the so-called hyper-Kähler structures. In the case of an
oriented four-dimensional smooth manifoldX a hyper-Kähler structure is a metric whose
holonomy is contained in SU(2). A manifold with such a structure is Ricci-flat and self-dual,
and its metric is Kähler with respect to each of the three anticommuting complex structures.
Alternatively, a hyper-Kähler structure onXmay be defined to be a triple of smooth, closed
2-formsσ1, σ2, σ3 onX that can be represented locally according to

σ1 = l1 ∧ l4 + l2 ∧ l3, σ2 = l1 ∧ l3 − l2 ∧ l4, σ3 = l1 ∧ l2 + l3 ∧ l4, (2)

where(l1, . . . , l4) is a local oriented frame of 1-forms onX. The systematic construction of
ALE metrics with holonomy SU(2) as hyper-Kähler quotients was initiated by Hitchin[12]
and carried over by Kronheimer[15,16], who studied the spacesC2/G for general polyhedra
groupsG ⊂ SU(2) and showed the existence of hyper-Kähler metrics on the resolution
M for the considered groupsG, giving a complete classification. For cyclic groups these
metrics are explicitly known. More recently, ALE metrics with holonomy SU(2), SU(3)



412 P. Ramacher / Journal of Geometry and Physics 44 (2003) 407–474

and SU(4) have become relevant for the construction of compact 7- and 8-manifolds with
holonomyG2 and Spin(7), and we refer the reader to the work of Joyce[25].

The first example of a hyper-Kähler ALE four-manifold was found by Eguchi and Hanson
[4]. We will now briefly proceed to describe its construction. Letm = 2 andG = Z2 and
consider the mapping

Φ : C2 → C3, Φ(z1, z2) = (z21, z
2
2, z1z2).

The image ofC2 underΦ is

X := ImΦ = {(w1, w2, w3) ∈ C3 : w1w2 = w2
3},

andΦ induces a bijectionΦ : C2/{±1} → X so thatX becomes analytically equivalent to
C2/{±1}. The canonical bundle overP1(C),

H := {(l, v) ∈ P1(C)× C2 : v ∈ l},
can be described explicitly as follows. If one introduces the homogeneous coordinates [α :
β] in P 1(C), then the total spaceH consists of all equivalence classes of triples [α, β, γ ]
with respect to the equivalence relation(α, β, γ ) ∼ (Aα,Aβ, γ /A), whereA ∈ C∗, i.e.

H = {(α, β, γ ) ∈ (C2 \ {0})× C}/ ∼ .

The one-dimensional complex tangential bundleT P1(C) is biholomorphic to the square of
the dual of the canonical bundle[18]

T P1(C) = H ∗ ⊗H ∗,

from which one obtains, for the cotangential bundleT ∗P1(C), the description

T ∗P1(C) = H 2 = {(α, β, γ ) ∈ (C2 \ {0})× C}/ ∼1,

with the equivalence relation(α, β, γ ) ∼1 (Aα,Aβ, γ /A
2). Notice thatH 2 is simply

connected. We define now the mapping

π : H 2 → X, π([α, β, γ ]) = (α2γ, β2γ, αβγ ).

The preimage of the point(0,0,0) underπ is the zero section of the bundleH 2. Away
from this setπ : H 2 \ P1(C) → X \ {(0,0,0)} is bijective, and hence(H 2, π) represents
a resolution of the singularity ofC2/{±1} at zero. Summing up one obtains the diagram

where the mappingπ1 is given by the formulaπ1([α, β, γ ]) = [α
√
γ , β

√
γ ]. The closed

holomorphic 2-form dz1 ∧ dz2 and the functionu1 := |z1|2 + |z2|2 on C2 are invariant
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under reflections at the origin, descend toC2/{±1} and, thus, lift to forms onH 2, which
we will denote by dz1 ∧ dz2 andu1 as well.

We come now to the description of the Eguchi–Hanson metric. Following[17], we con-
sider, on the complex manifoldH 2, the family of real-valued functionsft depending on the
parametert ,

ft :=
√
u2

1 + t4 + t2 log
u1√

u2
1 + t4 + t2

, t > 0.

Here the functionu1 : H 2 → R is explicitly given byu1([α, β, γ ]) = (|α|2 + |β|2)|γ |,
from which it follows that, away from the exceptional curve, i.e., the zero section,u1 is a
smooth function, and the same holds forft . For t > 0 the associated form

ωt := i∂∂̄ft ∈ E1,1(H 2)

is regular even in the exceptional curve and thus defines a Kähler form onH 2. For using
homogeneous coordinates we can define a complex analytic structure onH 2 as follows.
LetUα = {[α, β, γ ] : α �= 0}, Uβ = {[α, β, γ ] : β �= 0} be open subsets inH 2 and define
the homeomorphisms

hα : Uα → C2, [α, β, γ ] =
[
1,
β

α
, γ α2

]
�→
(
β

α
, γ α2

)
,

hβ : Uα → C2, [α, β, γ ] =
[
α

β
,1, γβ2

]
�→
(
α

β
, γβ2

)
.

Sincehα ◦ h−1
β : hβ(Uα ∩ Uβ) → hα(Uα ∩ Uβ) is a biholomorphic mapping, this gives

a complex analytic structure onH 2. We can therefore, choose the functionsβ andγ as
local coordinates inUα by settingα equal to 1, so that∂ : E(p,q)(H 2) → E(p+1,q)(H 2) and
∂̄ : E(p,q)(H 2) → E(p,q+1)(H 2) are given by

∂ = ∂

∂β
dβ + ∂

∂γ
dγ, ∂̄ = ∂

∂β̄
dβ̄ + ∂

∂γ̄
dγ̄

onUα. The regularity ofωt for t > 0 then follows by noting that the derivatives offt with
respect toγ, β, γ̄ andβ̄ become regular (note thatu1 = (1 + ββ̄)√γ γ̄ ). For example, in
C, one has

∂∂̄

(√
|z|2+t4+t2 log

|z|√
|z|2+t4 + t2

)
=2t6+2t2z̄z+(2t4+z̄z)√t4 + z̄z

4(t4 + z̄z)(t2 + √
t4 + z̄z)2 dz ∧ dz̄.

In case thatt = 0 on hasf0 = u1, andω0 becomes degenerate along the zero section. On
H 2 the Kähler formωt induces a Riemannian metric through the formula

gt (X, Y ) := ωt(X, JY), X, Y ∈ X(H 2),

whereJ denotes the complex structure ofH 2. For t �= 0 (H 2, gt ) becomes a complete
Riemannian manifold.
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The complex manifoldM4 := H 2 \ P1(C) is an open dense subset ofH 2, so it suffices
for the study of the geometric properties ofH 2 to considerωt as well as the other relevant
geometric objects just onM4. Further, sinceπ1 mapsM4 bijectively ontoC2 \ {0}/{±1},
ωt can be explicitly computed onM4 with respect to the coordinatesz1, z2. For u1 =
z1z̄1 + z2z̄2 ∈ E0,0(R4) as a function onC2 one has therefore

du1 =
∑
i=1,2

(
∂̄u1

∂zi
dzi + ∂u1

∂z̄i
dz̄i

)
∈ E1,0(R4)⊕ E0,1(R4),

∂̄u1 = z1 dz̄1 + z2 dz̄2, ∂u1 = z̄1 dz1 + z̄2 dz2,

see, e.g.[22], which yields∂̄ft =
(√
u2

1 + t4/u1

)
∂̄u1 and thus

ωt = −i
t4

u2
1

√
u2

1 + t4
{|z1|2 dz1 ∧ dz̄1 + |z2|2 dz2 ∧ dz̄2

+z1z̄2 dz2 ∧ dz̄1 + z̄1z2 dz1 ∧ dz̄2} + i

√
u2

1 + t4
u1

{dz1 ∧ dz̄1 + dz2 ∧ dz̄2}.

The form dzi∧dz̄j is expressed with respect to the coordinatesz1 = x1+ iy1, z2 = x2+ iy2
by

dzi ∧ dz̄j = dxi ∧ dxj + dyi ∧ dyj − i(dxi ∧ dyj + dxj ∧ dyi),

and the action ofJ is given byJ (∂xi ) = ∂yi , J (∂yi ) = −∂xi . Computation ofgt restricted
toM4 then gives

gt =



G1 0 −G4 −G3

0 G1 G3 −G4

−G4 G3 G2 0

−G3 −G4 0 G2


 ,

where

G1 = G−H(x2
1 + y2

1), G2 = G−H(x2
2 + y2

2),

G3 = H(x1y2 − y1x2), G4 = H(x1x2 + y1y2),

andG,H : M4 → R are the smooth functions

G :=
2
√
u2

1 + t4
u1

, H := 2t4

u2
1

√
u2

1 + t4
.

For later use we define the smooth function

K : M4 → R, K := G− Hu1 = 4G−1.
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From this it becomes evident thatgt satisfies condition(1). One further computes the
volume form dM4 = ωt ∧ ωt to beV (dz1 ∧ dz̄1 ∧ dz2 ∧ d̄z2), whereV ≡ 2. By the
general theory of Kähler manifolds[13] the Ricci-form Ric= i∂∂̄ logV then vanishes and it
follows immediately that the Riemannian curvature tensor with respect to the decomposition
∧2(M4) = ∧2+(M4)⊕ ∧2−(M4) is given by

R =
(
W+ 0

0 W−

)
+
(

0 B∗

B 0

)
− S

12
=
(
W+ 0

0 0

)
,

whereW− andW+ are the negative and positive part of the Weyl tensors, respectively,B

is the trace-free part of the Ricci tensor andS denotes the scalar curvature. The condition
B = 0 implies that(H 2, gt ) is an Einstein space and the vanishing ofW− means that
(H 2, gt ) is self-dual; the latter is equivalent to the statement that the bundle∧2−(M4) is flat
which in turn implies that there exist three parallel forms on∧2−(M4). These forms can be
chosen asωt and the two closed 2-formsσ2, σ3 defined byσ2 + iσ3 = dz1 ∧ dz2. One can
show that the triple(ω1, σ2, σ3) may locally be written in the form(1) and thus forms a
hyper-Kähler structure onM4 and hence onH 2.

We consider now the projection

p : H 2 = T ∗P1(C) → P1(C) ∼= C ∪ {∞} ∼= S2,

which is explicitly given by [α, β, γ ] �→ [α : β] �→ α/β. The functionu1 is invariant under
the standard action of U(2) onC2 resp.C2 \ {0}/{±1} � M4, which is given by its matrix
representation. On the other hand, U(2) acts as a group of holomorphic transformations on
C ∪ {∞} by the so-calledMöbius transform(

a b

c d

)
z = az+ b

cz+ d ,

resp. onP1(C) by(
a b

c d

)
[α : β] = [aα + bβ : cα + dβ].

Taking the mapping̃p := p◦π−1
1 : C2\{0}/{±1} → P1(C), which is given byp̃[z1, z2] =

[z1 : z2], one therefore sees that

p̃

((
a b

c d

)
[z1, z2]

)
=
(
a b

c d

)
p̃[z1, z2],

which means that the diagram
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is compatible with the group action of U(2). Since the setC2 \ {0}/{±1} is mapped by
U(2) onto itself, it follows that, by extending the action of U(2) to H 2, the exceptional
curve inH 2 must be mapped onto itself, too. The projectionp : H 2 → P1(C) is therefore
also compatible with the U(2)-action. Sinceu1 vanishes on the zero section, it becomes
U(2)-invariant onH 2. The Kähler metricωt and the Riemannian metricgt , which are
defined by means of the functionu1, are thus also invariant under U(2) in H 2.

3. Hypersurfaces in (T ∗P1(C), gt ) and their inner geometry

We now introduce certain hypersurfaces inT ∗P1(C) and to this end consider for any
curveΓ (s) = u(s)+ iv(s) = r(s)eiϕΓ (s) in C ∪ {∞} its preimage

M3
Γ := p−1(Γ ) = {[Γ (s),1, γ ] ∈ H 2 : γ ∈ C},

obtaining a real three-dimensional hypersurface inH 2. Letht be the Riemannian metric on
M3
Γ induced bygt . The three-manifoldM3

Γ is open and in case of a closed curve its end is
of topological typeT 2 × (0,∞)/{±1}, whereT 2 = S1 × S1 is the two-dimensional torus.
The hypersurfacesM3

Γ are asymptotically flat, but no ALE spaces, since their end is not
modeled on the end ofR3/G. Note thatM3

Γ is a one-dimensional complex vector bundle
overΓ .

Sincep : H 2 → P1(C) is compatible with the action of U(2), and sincegt and henceht
are invariant under this action,M3

Γ is mapped isometrically ontoM3
AΓ , whereA ∈ U(2).

Remember that under Möbius transforms generalized circles inC are mapped again into
generalized circles.

We will now compute the inner geometry of the hypersurfacesM3
Γ and assume from now

on thatΓ (s) is parameterized by arc length. Using the projectionp one obtains a parame-
terizationΨ : [0, LΓ )× (0,∞)× [0,2π) → π1(M

3
Γ ∩M4), (s, �, ϕ) �→ [x1, y1, x2, y2]

of the hypersurfacesM3
Γ outside the zero section

M3
Γ ∩M4 � {[�(u(s) cosϕ− v(s) sinϕ)�(v(s) cosϕ+ u(s) sinϕ), � cosϕ, � sinϕ]},

wheres is the length parameter ofΓ and
√
γ = � eiϕ ∈ C∗ denotes the parameter of the

fiber overΓ . All the following calculations will be performed inM3
Γ ∩M4, which is dense

inM3
Γ . The vector fields onM3

Γ induced by the parameterizationΨ read

∂s = Ψ∗(∂s) = (�(u̇ cosϕ − v̇ sinϕ), �(v̇ cosϕ + u̇ sinϕ),0,0),

∂� = Ψ∗(∂�) = (u cosϕ − v sinϕ, v cosϕ + u sinϕ, cosϕ, sinϕ),

∂ϕ = Ψ∗(∂ϕ) = (−�(u sinϕ + v cosϕ),−�(v sinϕ − u cosϕ),−� sinϕ, � cosϕ).

Further, one has

|Γ̇ (s)|2 = u̇2 + v̇2 = ṙ2 + r2ϕ̇2
Γ = 1,

sinces is the arc length parameter ofΓ . Note also thatuu̇+ vv̇ = rṙ anduv̇− vu̇ = r2ϕ̇Γ .
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Moreover, outside the zero section the following identities hold:

(x2
1 + y2

1)|M3
Γ

= �2r2, (x2
2 + y2

2)|M3
Γ

= �2, (x1y2 − y1x2)|M3
Γ

= −v�2,

(x1x2 + y1y2)|M3
Γ

= u�2,

andu1|M3
Γ

= �2(r2 + 1). Let ht be the Riemannian metric onM3
Γ induced bygt . In the

case of a closed curveΓ the hypersurface(M3
Γ , ht ) is a complete Riemannian manifold for

t �= 0. Making use of the above relations one obtains the following proposition.

Proposition 1. OnM3
Γ ∩M4, the coefficients of the induced Riemannian metricht with

respect to the local coordinate frame{∂s, ∂�, ∂ϕ} are given by

h11 = (K +H�2)�2, h12 = rṙ�K, h13 = ϕ̇Γ r
2�2K, h22 = (r2 + 1)K,

h23 = 0, h33 = (r2 + 1)�2K.

The functionK is given onM3
Γ ∩M4 by the formula

K = 2�2(r2 + 1)√
�4(r2 + 1)2 + t4

,

and the functionsG andH by

G := 2
√
�4(r2 + 1)2 + t4
�2(r2 + 1)

, H := 2t4

�4(r2 + 1)2
√
�4(r2 + 1)2 + t4

.

In order to compute the relevant geometric quantities ofM3
Γ it turns out to be convenient

to work within the framework of Cartan. For this purpose we determine an orthonormal
frame with respect toht by the ansatz

Y1 = 1√
h22
∂�, Y2 = 1√

h33
∂ϕ, Y3 = D∂s + E∂� + F∂ϕ. (3a)

The vector fieldsY1 andY2 are normalized to length 1; sinceh23 = 0, they are orthogonal to
each other. From the conditionht (Y1, Y3) = ht (Y2, Y3) = 0 together withht (Y3, Y3) = 1
one obtains

D = h22Σ, E = −h12Σ, F = −h13

�2
Σ. (3b)

Here we have introduced the functionΣ := �
√
(detht )−1 and one computes

detht = h22(h11h33 − h2
12�

2 − h2
13) = 4(r2 + 1)K�4 = 8�6(r2 + 1)2√

�4(r2 + 1)2 + t4
> 0.

The vector fields{Y1, Y2, Y3} are defined onM3
Γ ∩M4 and outside the exceptional curve

do represent a global section in the frame bundle ofM3
Γ . Note that sinceh22 is positive,D
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is always positive. The local base of 1-forms{ω1, ω2, ω3} dual to the orthonormal frame is
then given by

ω1 =
√
h22

(
d� − E

D
ds

)
, ω2 =

√
h33

(
dϕ − F

D
ds

)
, ω3 = 1

D
ds, (4)

and the connection formsωji = ht (∇Yj , Yi) of the Levi-Civita connection∇ onM3
Γ as well

as the components of the Riemannian curvature tensorR
j

kli = Rklij are uniquely determined
by Cartan’s structure equations

dωi =
3∑
j=1

ωij ∧ ωj , (5)

dωij =
3∑
k=1

ωik ∧ ωkj + 1

2

3∑
k,l=1

R
j

kliω
k ∧ ωl. (6)

We determine now the connection forms of the considered hypersurfaces.

Proposition 2. With respect to the orthonormal frame(3a)and (3b), the formsωji of the
Levi-Civita connection onM3

Γ ∩M4 are given by

ω12 = 1√
h22

(
1

�
+ 1

2
(logK),�

)
ω2 =

(
1 + �

2
(logK),�

)(
dϕ − F

D
ds

)
,

ω13 = − 1√
h22
(logD),�ω

3 = − 1

D
√
h22
(logD),� ds, ω23 = 0.

Proof. Using the orthonormal frame{Y1, Y2, Y3} onM3
Γ ∩ M4, the components of the

Levi-Civita connection can be obtained via the formulas

2ht (∇Yi Yj , Yk) = ht ([Yi, Yj ], Yk)− ht ([Yj , Yk], Yi)+ ht ([Yk, Yi ], Yj ), (7)

resulting from the Koszul formula. A direct computation of the commutators yields

[Y1, Y2] = − 1√
h22

(
1

�
+ 1

2

K,�

K

)
Y2,

[Y1, Y3] =
(
E,� + D

2h22
(2rṙK + (r2 + 1)K,s)+ E

2h22
(r2 + 1)K,� − E

D
D,�

)
Y1

+�
(
F,� − F

D
D,�

)
Y2 + 1√

h22

D,�

D
Y3,

[Y2, Y3] =
(
D

2h33
�2(2rṙK + (r2 + 1)K,s)+ E

2h33
(r2 + 1)(2�K + �2K,�)

)
Y2.

Now, a short calculation gives

(r2 + 1)K,s = rṙ�K,�, (8)



P. Ramacher / Journal of Geometry and Physics 44 (2003) 407–474 419

by which one further calculates

E,� − E

D
D,� = Σ

(
h12

h22
(r2 + 1)K,� − rṙK − rṙ�K,�

)
= −ΣrṙK,

D(2rṙK + (r2 + 1)K,s)+ E(r2 + 1)K,� = 2(r2 + 1)rṙK2Σ,

which shows that the first coefficient of [Y1, Y3] vanishes. Similarly, it can be seen that the
second coefficient is also zero, since

F,� − F

D
D,� = −h13,�

1

�2
Σ − h13

(
−2

1

�3
Σ + 1

�2
Σ,�

)

+h13
1

�2
Σ

1

(r2 + 1)KΣ
(r2 + 1)(K,�Σ +KΣ,�)

=Σ
(

−r2ϕ̇Γ (2�K + �2K,�)
1

�2
+ 2r2ϕ̇Γ

(
1

�
K + 1

2
K,�

))
= 0,

and by using(8)again one sees that the commutator [Y2, Y3] vanishes completely. InEq. (7)
therefore only the terms

ht ([Y2, Y1], Y2)= 1√
h22

(
1

�
+1

2
(logK),�

)
, ht ([Y3, Y1], Y3) = − 1√

h22
(logD),�,

are non-trivial, and for the formsωij this gives the stated expressions. �

Summing up, one obtains that the structureequations (5)read

dω1 = ω12 ∧ ω2 + ω13 ∧ ω3 = 0,

ω2 = ω21 ∧ ω1 + ω23 ∧ ω3 = 1√
h22

(
1

�
+ 1

2
(logK),�

)
ω1 ∧ ω2,

dω3 = ω31 ∧ ω1 + ω32 ∧ ω2 = − 1√
h22
(logD),�ω

1 ∧ ω3.

We are now able to compute the components of the Riemannian curvature tensor as well
as the Ricci tensor and the scalar curvature of the hypersurfaceM3

Γ .

Proposition 3. With respect to the sections(3a)and(3b), the components of the Riemannian
curvature tensor R of the hypersurfaces(M3

Γ , ht ) are given by

R1212 = 1

2h22

(
1

�
(logK),� + (logK),��

)
,

R2323 = − 1

2h22

(
2

�
+ (logK),�

)
(logD),�,

R1313 = 1

2h22
(−2(logD),�� + (logK),�(logD),� + 2(logD)2,�),

whileR1213, R2312 andR2313 vanish.
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Proof. We calculate the components ofR by using the structureequations (6)of the hy-
persurfaceM3

Γ . By Proposition 2, the 2-formsω13 ∧ ω32 andω12 ∧ ω23 vanish and

ω21 ∧ ω13 = 1

h22

(
1

�
+ 1

2
(logK),�

)
(logD),�ω

2 ∧ ω3.

Further, the differentials dωij of the connection forms are given by

dω12 =
(�

2
(logK),�

)
,�

d� ∧ dϕ +
(�

2
(logK),�

)
,s

ds ∧ dϕ

−
(
F

D

(
1 + �

2
(logK),�

))
,�

d� ∧ ds

=
(

1

2
(logK),� + �

2
(logK),��

)
1

h22�
ω1 ∧ ω2

−
((

1

2
(logK),� + �

2
(logK),��

)
E√
h33

+ �

2
(logK),s�

D√
h33

)
ω2 ∧ ω3,

dω13 = −
(

1

D
√
h22
(logD),�

)
,�

d� ∧ ds

=
(

− 1

h22
(logD),�� + 1

2h22
(logK),�(logD),� + 1

h22
(logD)2,�

)
ω1 ∧ ω3,

dω23 = 0,

and one obtains the stated formulas for the componentsRijkl of the curvature tensor by using
(6). Notice that

((logK),� + �(logK),��)E + �(logK),s�D

= ((logK),�+�(logK),��)(−rṙ�KΣ)+�
(
�rṙ

r2 + 1
(logK),�

)
,�

(r2 + 1)KΣ = 0,

implying thatR2312 vanishes. �

Theorem 1. The componentsRij of the Ricci tensorRic of the RiemannianC∞-manifolds
(M3

Γ , ht ) are given with respect to the orthonormal frame(3a)and(3b)by

Ric = 1

2(�4(r2 + 1)2 + t4)3/2




2t4 0 0

0 2t4 − �4(r2 + 1)2 0

0 0 −4t4 − �4(r2 + 1)2


 ,

and the scalar curvature is

S = R11 + R22 + R33 = − �4(r2 + 1)2

(�4(r2 + 1)2 + t4)3/2 .
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Proof. One computes

(logK),� = 2t4

(�4(r2 + 1)2 + t4)� ,

(logK),�� = − 2t4

(�4(r2 + 1)2 + t4)�2
− 8t4�2(r2 + 1)2

(�4(r2 + 1)2 + t4)2 ,

(logΣ),� = − 1

�
− t4

(�4(r2 + 1)2 + t4)� = − 1

�
− 1

2
(logK),�,

(logD),� = (logK),� + (logΣ),� = − 1

�
+ 1

2
(logK),�,

obtaining thus, with the previous proposition, for the componentsRij = ∑3
k=1Rikkj of the

Ricci tensor that

R11 = 1

2h22

[
− 1

�
(logK),� − (logK),�� − (logK),�

(
− 1

�
+ 1

2
(logK),�

)

−2

(
1

�2
− 1

�
(logK),� + 1

4
(logK)2,�

)
+ 2

(
1

�2
+ 1

2
(logK),��

)]

= 1

2h22

(
−(logK)2,� + 2

1

�
(logK),�

)
,

R22 = 1

2h22

[
− 1

�
(logK),�−(logK),��+ 1

�2
(2 + �(logK),�)

(
−1 + �

2
(logK),�

)]

= 1

2h22

(
− 1

�
(logK),� − (logK),�� − 2

�2
+ 1

2
(logK)2,�

)
,

R33 = 1

2h22

[
−(logK),�

(
− 1

�
+1

2
(logK),�

)
−2

(
1

�2
− 1

�
(logK),� + 1

4
(logK)2,�

)

+2

(
1

�2
+ 1

2
(logK),��

)
+ 1

�
(2 + �(logK),�)

(
− 1

�
+ 1

2
(logK),�

)]

= 1

2h22

(
(logK),�� − 1

2
(logK)2,� + 3

�
(logK),� − 2

�2

)
,

the remaining coefficients being equal to zero. In the same way as the components of the
Riemannian curvature tensor turn out to be bounded when� → 0, the components of Ric
and thusS stay bounded, too. Explicitly, one has

R11 = 1

�2(r2 + 1)2(�4(r2 + 1)2 + t4)3/2
(
t4

�2
(�4(r2 + 1)2 + t4)− t8

�2

)

= t4

(�4(r2 + 1)2 + t4)3/2 ,
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R22 = 1

2�2(r2 + 1)2(�4(r2 + 1)2 + t4)3/2

×
(

− t
4

�2
(�4(r2 + 1)+ t4)+ t8

�2
+ t4

�2
(�4(r2 + 1)2 + t4)+ 4t4�2(r2 + 1)2

− 1

�2
(�8(r2 + 1)4 + t8 + 2�4(r2 + 1)4)

)
= 2t4 − �4(r2 + 1)2

2(�4(r2 + 1)2 + t4)3/2 ,

R33 = 1

2�2(r2 + 1)2(�4(r2 + 1)2 + t4)3/2

×
(

− t
4

�2
(�4(r2 + 1)2 + t4)− 4t4�2(r2 + 1)2 − t8

�2

+ 3t4

�2
(�4(r2 + 1)2 + t4)− 1

�2
(�8(r2 + 1)4 + t8 + 2�4(r2 + 1)2t4)

)

= −4t4 − �4(r2 + 1)2

2(�4(r2 + 1)2 + t4)3/2 ,

showing that the divergent terms cancel out and the assertion follows. �

Hence, the scalar curvatureS is negative and tends as 1/�2(r2 + 1) to zero as� andr
go to infinity. Fort �= 0 all components of the Riemannian and Ricci tensor as well asS

remain regular at� = 0 and are therefore defined everywhere on the Riemannian manifolds
M3
Γ . For t = 0, the scalar curvature degenerates at� = 0 in concordance with the fact that

the hypersurfacesM3
Γ are no longer complete in this case.

4. The second fundamental form of the hypersurfacesM3
Γ

We proceed now studying the second fundamental form of the hypersurfacesM3
Γ . In order

to do so, we need the Levi-Civita connection∇H2
of the Eguchi–Hanson space(H 2, gt ).

It can be obtained from the Koszul formula, which reads for commuting vector fields as
follows:

2gt (∇H2

X Y,Z) = X(gt (Y, Z))+ Y (gt (Y, Z))− Z(gt (X, Y )).
In the following we will denote the coordinatesx1, y1, x2, y2 of the dense complex manifold
M4 ⊂ H 2 by x1, x2, x3, x4 so that the components of∇H2

onM4 are given by

Γijk = 1

2

(
∂gik

∂xj
+ ∂gjk

∂xi
− ∂gij

∂xk

)
, Γ kij = gklΓijl . (9)

Because of the symmetry

gkl(xm) = gk̄l̄(xm̄), k̄ := k + 2 mod 4, (10)

of the covariant coefficients of the metric one obtains, for the Christoffel symbols, the
relations

Γklm(xn) = Γk̄l̄m̄(xn̄). (11)
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Now the contravariant coefficientsgij of gt are given by the matrix

g−1
t = 1√

detgt



G2 0 G4 G3

0 G2 −G3 G4

G4 −G3 G1 0

G3 G4 0 G1


 ,

where detgt = (G1G2 −G2
3 −G2

4)
2 = 16. Further, the derivatives of the functionsG and

H are

G,xi = −2xiH, H,xi = −2xiI,

with I := 2t4(3u2
1+t4)/u3

1(u
2
1+t4)3/2. A straightforward calculation yields the Christoffel

symbols of the first kind.

Proposition 4. The Christoffel symbols of the first kind of the Eguchi–Hanson space
(H 2, gt ) are given onM4 by

Γ111 = −x1(2H − I (x2
1 + x2

2)), Γ112 = x2(2H − I (x2
1 + x2

2)),

Γ113 = 2I (x1x2x4 + 1
2x3(x

2
1 − x2

2)), Γ114 = −2I (x1x2x3 + 1
2x4(x

2
2 − x2

1)),

Γ131 = −x3(H − I (x2
1 + x2)), Γ132 = x4(H − I (x2

1 + x2
2)),

the remaining ones can be obtained from these by taking into account the symmetryΓijk =
Γjik as well as the relations(11) together with the additional symmetries

Γ22i = −Γ11i , Γ44i = −Γ33i , Γ23i = Γ14i , Γ24i = −Γ13i

and

Γ12i = Γ11(i−1), Γ14i = Γ13(i−1), Γ34i = Γ33(i−1) for i even,

Γ12i = −Γ11(i+1), Γ14i = −Γ13(i+1), Γ34i = −Γ33(i+1) for i odd.

The Christoffel symbols of the second kind are derived from these formulas as indicated
in (9). By the symmetries of the Levi-Civita connection∇H2

it is sufficient to compute only
six of them explicitly. So one has

Γ 1
11 = −1

4x1G(2H − I (x2
1 + x2

2))+ 1
4H [x1(x

2
3 + x2

4)(2H − I (x2
1 + x2

2))

+2I [(x1x3 + x2x4)(x1x2x4 + 1
2x3(x

2
1 − x2

2))

−(x1x4 − x2x3)(x1x2x3 + 1
2x4(x

2
2 − x2

1))]]

= x1[−1
4G(2H − I (x2

1 + x2
2))+ 1

2H
2(x2

3 + x2
4)+ 1

4HI[−(x2
1 + x2

2)(x
2
3 + x2

4)

+(x2
3 + x2

4)(x
2
1 − x2

2)+ 2(x2
2x

2
4 + x2

2x
2
3)]] = x1A1,

where we have introducedA1 = (1/2)H 2(x2
3 + x2

4) − (1/4)G(2H − I (x2
1 + x2

2)). In a
similar way, one obtains

Γ 2
11 = −x2A1.
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Further one checks that

Γ 3
11 = 1

4GΓ113 + 1
4H [−Γ113(x

2
1 + x2

2)− (2H − I (x2
1 + x2

2))

× [x1(x1x3 + x2x4)+ x2(x1x4 − x2x3)]]

= 1
4GΓ113 − 1

2H
2(2x1x2x4 + x3(x

2
1 − x2

2))

+1
4H [−Γ113(x

2
1 + x2

2)+ I (x2
1 + x2

2)(2x1x2x4 + x3(x
2
1 − x2

2))]

= 1
2C(x1x2x4 + 1

2x3(x
2
1 − x2

2)),

as well as

Γ 4
11 = −1

2C(x1x2x3 + 1
2x4(x

2
2 − x2

1)),

whereC = (IG − 2H 2). Finally, one calculates

Γ 1
13 = 1

4GΓ131 + 1
4H [−Γ131(x

2
3 + x2

4)+ (H − I (x2
3 + x2

4))

× [−x1(x2x4 + x1x3)+ x2(x1x4 − x2x3)]]

= −1
4x3[G(H − I (x2

1 + x2
2))+H 2(−x2

3 − x2
4 + x2

1 + x2
2)]

+1
4HI[x3(x

2
1 + x2

2)(x
2
3 + x2

4)− x3(x
2
3 + x2

4)(x
2
1 + x2

2)] = −x3B1,

Γ 2
13 = x4B1

with B1 given byB1 = (1/4)[G(H − I (x2
1 + x2

2))+H 2(x2
1 + x2

2 − x2
3 − x2

4)]. Taking into
account the relations(10) and (11)one thus obtains that theΓ ijk are given as follows.

Proposition 5. The componentsΓ ijk of the Levi-Civita connection of the Eguchi–Hanson

space(H 2, gt ) are given onM4 by

Γ 1
11 = x1A1, Γ 2

11 = −x2A1, Γ 3
33 = x3A2, Γ 4

33 = −x4A2,

Γ 3
11 = 1

2C(x1x2x4 + 1
2x3(x

2
1 − x2

2)), Γ 4
11 = −1

2C(x1x2x3 + 1
2x4(x

2
2 − x2

1)),

Γ 1
33 = 1

2C(x2x3x4 + 1
2x1(x

2
3 − x2

4)), Γ 2
33 = −1

2C(x1x3x4 + 1
2x2(x

2
4 − x2

3)),

Γ 1
13 = −x3B1, Γ 2

13 = x4B1, Γ 3
13 = −x1B2, Γ 4

13 = x2B2,

where

A1 = 1
2H

2(x2
3 + x2

4)− 1
4G(2H − I (x2

1 + x2
2)),

B1 = 1
4[G(H − I (x2

1 + x2
2))+H 2(x2

1 + x2
2 − x2

3 − x2
4)],

A2 = 1
2H

2(x2
1 + x2

2)− 1
4G(2H − I (x2

3 + x2
4)),

B2 = 1
4[G(H − I (x2

3 + x2
4))+H 2(x2

1 + x2
2 − x2

3 − x2
4)],

andC = (IG−2H 2). All remainingΓ ijk can be obtained from the above by usingΓ kij = Γ kji
as well as the relations

Γ i22 = −Γ i11, Γ i44 = −Γ i33, Γ i23 = Γ i14, Γ i24 = −Γ i13,
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and

Γ i12 = Γ
(i−1)
11 , Γ i14 = Γ

(i−1)
13 , Γ i34 = Γ

(i−1)
33 for i even,

Γ i12 = −Γ (i+1)
11 , Γ i14 = −Γ (i+1)

13 , Γ i34 = −Γ (i+1)
33 for i odd.

In order to describe the outer geometry of the hypersurfacesM3
Γ , we first determine a

field of unit normal vectorsN : M3
Γ → (TM3

Γ )
⊥ onM3

Γ . Up to orientation such a field is
given by the conditions

gt (Yi, N) = 0, i = 1,2,3, gt (N,N) = 1,

which are equivalent to the system of equations

N1(u cosϕ − v sinϕ)K +N2(v cosϕ + u sinϕ)K +N3K cosϕ +N4K sinϕ = 0,

−N1(u sinϕ + v cosϕ)K −N2(v sinϕ − u cosϕ)K −N3K sinϕ +N4K cosϕ = 0,

{N1(u̇ cosϕ − v̇ sinϕ)+N2(v̇ cosϕ + u̇ sinϕ)}(K +H�2)−N3( cosϕ(vv̇ + uu̇)
+ sinϕ(u̇v − v̇u))H�2 −N4( sinϕ(vv̇ + uu̇)− cosϕ(u̇v − v̇u))H�2 = 0,

(N2
1 +N2

2)(K +H�2)+ (N2
3 +N2

4)(K +H�2r2)+ 2(N4N1 −N3N2)v�
2H

−2(N3N1 +N4N2)u�
2H = 0.

By solving these equations with respect to the componentsNi of the unit normal vectors
one obtains the following proposition.

Proposition 6. OnM3
Γ ∩M4 a field of unit normal vectors is given by

N = 1

2

√
K

r2 + 1
(w1,−w2,−rw3, rw4),

where the functionswi are

w1 = v̇ cosϕ + u̇ sinϕ, w2 = u̇ cosϕ − v̇ sinϕ,

w3 = ṙ sinϕ + rϕ̇Γ cosϕ, w4 = ṙ cosϕ − rϕ̇Γ sinϕ.

We note thatw2 andw1 can be viewed as the real and imaginary parts ofΓ̇ (s)eiϕ ,
w4 andw3 as the real and imaginary parts ofΓ̇ (s)eiϕ e−iϕΓ respectively. By construction
the hypersurfacesM3

Γ are embedded inH 2. If N denotes the field of unit normal vectors
determined above, the second fundamental form ofM3

Γ is defined by

II : X(M3
Γ )× X(M3

Γ ) → F(M3
Γ ), II (X, Y ) = gt (X,∇H2

Y N). (12)

It is symmetric and bilinear. In the following we will write the coordinatess, �, ϕ as
η1, η2, η3, and denote the components of II with respect to the induced frame of coor-
dinate vector fields by IIij . For shortness, we will simply write∇ for ∇H2

in the remaining
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of this section. Explicitly,

∇∂ηj N(p) = (∂ηj Ni(p)+Ni(p)∇∂ηj )∂xi |p,
∇∂ηj ∂xi |p = dxk(∂ηj )(p)Γ

l
ki(p)∂xl |p, (13)

wherep ∈ M3
Γ ∩M4. OnM3

Γ ∩M4 the coordinatesx1, x2, x3, x4 can be expressed by the
coordinatess, ϕ, � according to

x1 = �ζ1, x2 = �ζ2, x3 = � cosϕ, x4 = � sinϕ,

where we have defined

ζ1 = u cosϕ − v sinϕ, ζ2 = v cosϕ + u sinϕ.

Thus one obtains that onM3
Γ ∩M4 the polynomials appearing in the expressions for the

Γ ijk are given by

[x1x2x4 + 1
2x3(x

2
1 − x2

2)]|M3
Γ

= �3[−uv sinϕ + (u2 − v2)1
2 cosϕ],

[x1x2x3 + 1
2x4(x

2
2 − x2

1)]|M3
Γ

= �3[uv cosϕ + (u2 − v2)1
2 sinϕ],

[x2x3x4 + 1
2x1(x

2
3 − x2

4)]|M3
Γ

= 1
2�

3[v sinϕ + u cosϕ],

[x1x3x4 + 1
2x2(x

2
4 − x2

3)]|M3
Γ

= 1
2�

3[u sinϕ − v cosϕ].

We compute now the covariant derivatives∇∂ηi N . To this end we first note the relations

w3 cosϕ − w4 sinϕ = rϕ̇Γ , w4 cosϕ+w3 sinϕ = ṙ , w2 cosϕ + w1 sinϕ = u̇,

w1 cosϕ − w2 sinϕ = v̇, ζ1w2 + w1ζ2 = rṙ, ζ1w1 − ζ2w2 = r2ϕ̇Γ . (14)

Because of

ru̇ = r(ṙ cosϕΓ − rϕ̇Γ sinϕΓ ) = ṙu− rϕ̇Γ v,
rv̇ = r(ṙ sinϕΓ + rϕ̇Γ cosϕΓ ) = ṙv + rϕ̇Γ u,

one has further
rw1 = cosϕ(ṙv + rϕ̇γ u)+ sinϕ(ṙu− rϕ̇Γ v) = uw3 + vw4, (15a)

rw2 = cosϕ(ṙu− rϕ̇γ v)− sinϕ(ṙv + rϕ̇Γ u) = −vw3 + uw4, (15b)

and thus

rw3 = cosϕΓ (uw3 + vw4)− sinϕΓ (−vw3 + uw4) = uw1 − vw2, (15c)

rw4 = sinϕΓ (uw3 + vw4)+ cosϕΓ (−vw3 + uw4) = w1v + w2u. (15d)

Proposition 7.

∇∂sN =
4∑
i=1

(Ni,s +Φ(ṙNi + rϕ̇Γ Ni,ϕ))∂xi = N,s +Φ(ṙN + rϕ̇Γ N,ϕ),

whereΦ = −(1/4)HK�2r.
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Proof. By using the symmetries of the Christoffel symbolsΓ kij one has

∇∂sN =
4∑
i=1

[
Ni,s +

4∑
k=1

Nk(Γ
i
1k�w2 + Γ i2k�w1)

]
∂xi

=
4∑
i=1

[Ni,s + �Γ i11(N1w2 −N2w1)+ �Γ i12(N2w2 +N1w1)

+ �Γ i13(N3w2 −N4w1)+ �Γ i14(N4w2 +N3w1)]∂xi

=
4∑
i=1

[
Ni,s + �1

2

√
K

r2 + 1
(2Γ i11w1w2 + Γ i12(w

2
1 − w2

2)

+Γ i13r(−w3w2 − w4w1)+ Γ i14r(w4w2 − w3w1))

]
∂xi .

The first component of∇∂sN reads

dx1(∇∂sN) = N1,s + 1

2

√
K

r2 + 1
�2r(A1 + B1)(ṙw1 + rϕ̇Γ w2),

since by the relations(14)one has

2Γ 1
11w1w2 + Γ 1

12(w
2
1 − w2

2)

= A1�(2ζ1w1w2 + ζ2(w2
1 − w2

2))

= A1�[w1(ζ1w2 + w1ζ2)+ w2(ζ1w1 − ζ2w2)]

= A1�r(ṙw1 + rϕ̇Γ w2),

Γ 1
13r(−w3w2 − w4w1)+ Γ 1

14r(w4w2 − w3w1)

= B1�r[ cosϕ(w2w3 + w1w4)− sinϕ(w4w2 − w3w1)]

= B1�r[w2(w3 cosϕ − w4 sinϕ)+ w1(w4 cosϕ + w3 sinϕ)]

= B1�r(w2rϕ̇Γ + w1ṙ).

The second component is given by

dx2(∇∂sN) = N2,s + 1

2

√
K

r2 + 1
�2r(A1 + B1)(−ṙw2 + rϕ̇Γ w1),

as can be verified by an analogous calculation. As far as the third component is concerned,
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using also the relations(15a)–(15d), one computes

2Γ 3
11w1w2 + Γ 3

12(w
2
1 − w2

2)

= 1

2
�3C

[(
−uv sinϕ + u2 − v2

2
cosϕ

)
2w1w2

+
(

uv cosϕ + u2 − v2

2
sinϕ

)
(w2

1 − w2
2)

]

= 1

2
�3C

[
uv(w1(−w2 sinϕ + w1 cosϕ)+ w2(−w1 sinϕ − w2 cosϕ))

+ u2 − v2

2
(w1(w2 cosϕ + w1 sinϕ)+ w2(w1 cosϕ − w2 sinϕ))

]

= 1

2
�3C

[
uv(w1v̇ − w2u̇)+ u2 − v2

2
(w1u̇+ w2v̇)

]

= 1

2
�3C

[vw1

2
(v̇u− u̇v)+ uw2

2
(−u̇v + v̇u)+ uw1

2
(vv̇ + uu̇)− vw2

2
(uu̇+ vv̇)

]
= 1

4
�3C[(vw1 + uw2)r

2ϕ̇Γ + (uw1 − vw2)rṙ]

= 1

4
�3r2C(rϕ̇Γ w4 + ṙw3)

and

Γ 3
13r(−w3w2 − w4w1)+ Γ 3

14r(w4w2 − w3w1)

= B2�r[−ζ1(−w2w3 − w1w4)− ζ2(w4w2 − w3w1)]

= B2�r[w3(ζ1w2 + ζ2w1)+ w4(ζ1w1 − ζ2w2)] = B2�r
2(w3ṙ + w4rϕ̇Γ ),

so that

dx3(∇∂sN) = N3,s + 1

2

√
K

r2 + 1
�2r2

(
1

4
�2C + B2

)
(ṙw3 + rϕ̇Γ w4).

In the same way one verifies for the fourth component that

dx4(∇∂sN) = N4,s + 1

2

√
K

r2 + 1
�2r2

(
1

4
�2C + B2

)
(−ṙw4 + rϕ̇Γ w3).

The stated expression for∇∂sN then follows by noting that the equalities

A1 + B1 = 1
4(H

2�2(r2 + 1)− GH) = −1
4HK,

1
4C�

2 + B2 = 1
4(IG − 2H 2)�2 + 1

4(G(H − I�2)−H 2�2(r2 − 1))

= 1
4H(G−H�2(r2 + 1)) = 1

4HK

hold and that the derivativesNi,ϕ of the components of the normal vector with respect toϕ

are given by the componentsNi according to

Ni,ϕ = Ni−1 for i even, Ni,ϕ = −Ni+1 for i odd, (16)
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thus finishing the proof. We remark that, since∇gt = 0, one has thatgt (N,∇YN) = 0 for
all vector fieldsY ∈ X(M3

Γ ), and a computation indeed shows that the normal part of∇∂sN
vanishes. �

Proposition 8.

∇∂�N = 0.

Proof. One computes

∇∂�N =
4∑
i=1

[
Ni,� +

4∑
k=1

Nk(Γ
i
1kζ1 + Γ i2kζ2 + Γ i3k cosϕ + Γ i4k sinϕ)

]
∂xi

=
4∑
i=1

[Ni,� + Γ i11(N1ζ1 −N2ζ2)+ Γ i12(N2ζ1 +N1ζ2)

+Γ i13(N3ζ1 −N4ζ2 +N1 cosϕ −N2 sinϕ)+ Γ i14(N4ζ1 +N3ζ2

+N2 cosϕ +N1 sinϕ)+ Γ i33(N3 cosϕ −N4 sinϕ)

+Γ i34(N4 cosϕ +N3 sinϕ)]∂xi .

Once again we calculate the components of∇∂�N separately. By using the symmetries of
theΓ ijk and(14)–(15d), one obtains

Γ 1
11(N1ζ1 −N2ζ2)+ Γ 1

12(N2ζ1 +N1ζ2)

= 1

2

√
K

r2 + 1
A1�[ζ1(w1ζ1 + w2ζ2)+ ζ2(−w2ζ1 + w1ζ2)] = 1

2

√
K

r2 + 1
A1�r

2w1,

Γ 1
13(N3ζ1 −N4ζ2 +N1 cosϕ −N2 sinϕ)+ Γ 1

14(N4ζ1 +N3ζ2 +N2 cosϕ +N1 sinϕ)

= −1

2

√
K

r2 + 1
B1�[ cosϕ(r(−w3ζ1 − w4ζ2)+ w1 cosϕ + w2 sinϕ)

× sinϕ(r(w4ζ1 − w3ζ2)− w2 cosϕ + w1 sinϕ)]

= −1

2

√
K

r2 + 1
B1�[w1 + rw4(ζ1 sinϕ − ζ2 cosϕ)− rw3(ζ2 sinϕ + ζ1 cosϕ)]

= −1

2

√
K

r2 + 1
B1�[w1 + rw4(−v)− rw3u] = −1

2

√
K

r2 + 1
B1�(1 − r2)w1,

Γ 1
33(N3 cosϕ −N4 sinϕ)+ Γ 1

34(N4 cosϕ +N3 sinϕ)

= 1

4

√
K

r2 + 1
r�3C

[(v
2

sinϕ + u

2
cosϕ

)
(−w3 cosϕ − w4 sinϕ)

+
(u

2
sinϕ − v

2
cosϕ

)
(w4 cosϕ − w3 sinϕ)

]

= 1

8

√
K

r2 + 1
r�3C(−uw3 − vw4) = −1

8

√
K

r2 + 1
r2�3Cw1,
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and, moreover,

dx1(∇∂�N) = N1,� + 1

2

√
K

r2 + 1
�

(
(A1 + B1)r

2 −
(
B1 + 1

4
�2r2C

))
w1.

A similar calculation gives for the second component the expression

dx2(∇∂�N) = N2,� + 1

2

√
K

r2 + 1
�

(
−(A1 + B1)r

2 +
(
B1 + 1

4
�2r2C

))
w2.

One calculates further

Γ 3
11(N1ζ1 −N2ζ2)+ Γ 3

12(N2ζ1 +N1ζ2)

= �3C

4

√
K

r2 + 1

[(
−uv sinϕ + u2 − v2

2
cosϕ

)
(w1ζ1 + w2ζ2)

+
(

uv cosϕ + u2 − v2

2
sinϕ

)
(−w2ζ1 + w1ζ2)

]

= �3C

4

√
K

r2 + 1

[
− uv(w1(ζ1 sinϕ − ζ2 cosϕ)+ w2(ζ2 sinϕ + ζ1 cosϕ))

+ u2 − v2

2
(w1(ζ1 cosϕ + ζ2 sinϕ)+ w2(ζ2 cosϕ − ζ1 sinϕ))

]

= �3C

4

√
K

r2 + 1

[
−uv(−vw1 + uw2)+ u2 − v2

2
(uw1 + vw2)

]

= �3C

4

√
K

r2 + 1

u2 + v2

2
(uw1 − vw2) = 1

8

√
K

r2 + 1
�3r3Cw3,

as well as

Γ 3
13(N3ζ1−N4ζ2+N1 cosϕ −N2 sinϕ)+ Γ 3

14(N4ζ1 +N3ζ2 +N2 cosϕ +N1 sinϕ)

= �B2

2

√
K

r2 + 1
[−ζ1(r(−w3ζ1 − w4ζ2)+ w1 cosϕ + w2 sinϕ)

− ζ2(r(w4ζ1 − w3ζ2)− w2 cosϕ+w1 sinϕ)]

= �B2

2

√
K

r2+1
[w1(−ζ1 cosϕ−ζ2 sinϕ)+ w2(−ζ1 sinϕ+ζ2 cosϕ)+rw3(ζ

2
1 +ζ 2

2 )]

= �B2

2

√
K

r2 + 1
(−uw1 + vw2 + r3w3) = 1

2

√
K

r2 + 1
�r(r2 − 1)B2w3,

Γ 3
33(N3 cosϕ −N4 sinϕ)+ Γ 3

34(N4 cosϕ +N3 sinϕ)

= 1

2

√
K

r2 + 1
�rA2[ cosϕ(−w3 cosϕ − w4 sinϕ)+ sinϕ(w4 cosϕ − w3 sinϕ)]

= −1

2

√
K

r2 + 1
�rA2w3,
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thus obtaining for the third component of∇∂�N that

dx3(∇∂�N) = N3,� + 1

2

√
K

r2 + 1
�r

(
−(A2 + B2)+

(
B2 + 1

4
�2C

)
r2
)
w3.

Finally, by an analogous calculation one finds that the fourth component reads

dx4(∇∂�N) = N4,� + 1

2

√
K

r2 + 1
�r

(
A2 + B2 −

(
B2 + 1

4
�2C

)
r2
)
w4.

Since

A2 + B2 = 1
2H

2�2r2 − 1
4G(H − I�2)+ 1

4G(H − I�2)− 1
4H

2�2(r2 + 1)

= −1
4H(G−H�2(r2 + 1)) = −1

4HK,

1
4�

2r2C + B1 = 1
4[G(H − I�2r2)+H 2�2(r2 − 1)] + 1

4�
2r2(IG − 2H 2) = 1

4HK,

the desired statement follows by noting thatNi,� = (logK),�Ni/2 and

1
2(logK),� − 1

4HK�(r2 + 1) = 0. �

It remains to compute the covariant derivative ofN with respect to∂ϕ .

Proposition 9.

∇∂ϕN =
4∑
i=1

ΞNi,ϕ∂xi = ΞN,ϕ,

whereΞ = 1 − (1/4)HK�2(r2 + 1).

Proof. Again,

∇∂ϕN =
4∑
i=1

[
Ni,ϕ +

4∑
k=1

Nk[−�ζ2Γ i1k + �ζ1Γ i2k − � sinϕΓ i3k + � cosϕΓ i4k]

]
∂xi

=
4∑
i=1

[Ni,ϕ + �Γ i11(−ζ2N1 − ζ1N2)+ �Γ i12(−ζ2N2 + ζ1N1)

+ �Γ i13(−ζ2N3 −N1 sinϕ − ζ1N4 −N2 cosϕ)

+Γ i14�(−ζ2N4 +N1 cosϕ + ζ1N3 −N2 sinϕ)

+ �Γ i33(−N3 sinϕ −N4 cosϕ)+ Γ i34�(−N4 sinϕ +N3 cosϕ)]∂xi .

By the symmetries of theΓ ikj one has fori odd that

dxi(∇∂ϕN)−Ni,ϕ = −�(dxi+1(∇∂�N)−Ni+1,�)
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and one obtains for the first and third components

dx1(∇∂ϕN) = N1,ϕ + 1

2

√
K

r2 + 1
�2
(
(A1 + B1)r

2 −
(
B1 + 1

4
�2r2C

))
w2,

dx3(∇∂ϕN) = N3,ϕ + 1

2

√
K

r2 + 1
�2r

(
−(A2 + B2)+

(
B2 + 1

4
�2C

)
r2
)
w4.

In an analogous way one has fori even

dxi(∇∂ϕN)−Ni,ϕ = �(dxi−1(∇∂�N)−Ni−1,�),

the second and fourth components being given by

dx2(∇∂ϕN) = N2,ϕ + 1

2

√
K

r2 + 1
�2
(
(A1 + B1)r

2 −
(
B1 + 1

4
�2r2C

))
w1,

dx4(∇∂ϕN) = N4,ϕ + 1

2

√
K

r2 + 1
�2r

(
−(A2 + B2)+

(
B2 + 1

4
�2C

)
r2
)
w3,

and the assertion follows. Again, one verifies thatgt (N,∇∂ϕN) = 0. �

We are now able to compute the second fundamental form of the hypersurfaceM3
Γ .

Theorem 2. With respect to the coordinate frame(∂s, ∂�, ∂ϕ) the components of the second
fundamental form of the RiemannianC∞-manifolds(M3

Γ , ht ) are given by

II = �

2

√
K

r2 + 1



G(u̇v̈ − v̇ü)− 2H�2(uv̇ − vu̇) 0 K

0 0 0

K 0 0


 .

Proof. By Eqs. (12) and (13)andProposition 7one has

II 11 =
4∑

i,j=1

gij dxi(∂s)dxj (∇∂sN)=�[(N3,s+Φ(ṙN3 + rϕ̇Γ N3,ϕ))(−w2G4 + w1G3)

+ (N4,s +Φ(ṙN4 + rϕ̇Γ N4,ϕ))(−w2G3 + w1G4)

+ ((N1,s +Φ(ṙN1 + rϕ̇Γ N1,ϕ))w2 + (N2,s +Φ(ṙN2 + rϕ̇Γ N2,ϕ))w1)G1]

= �[H�2[Φ(−rṙ(N3w4 +N4w3)+ r2ϕ̇Γ (N4w4 −N3w3))

− r(N3,sw4 +N4,sw3)] + (G−H�2r2)[(N1,sw2 + w1N2,s)

+Φ(ṙ(N1w2 +N2w1)+ rϕ̇Γ (−N2w2 +N1w1))]] ,

where we made use of the relations(16)as well as

−w2G4 + w1G3 = (−w2u− w1v)�
2H = −rw4�

2H,

−w2G3 − w1G4 = (w2v − w1u)�
2H = −rw3�

2H.
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Since furtherN3w4 +N4w3 = 0,N1w2 +N2w1 = 0 and

N4w4 −N3w3 = 1

2

√
K

r2 + 1
r(w2

3 + w2
4) = 1

2

√
K

r2 + 1
r

−N2w2 +N1w1 = 1

2

√
K

r2 + 1
(w2

1 + w2
2) = 1

2

√
K

r2 + 1
,

one obtains for the expression above that

II 11 =H�3

[
Φr3ϕ̇Γ

1

2

√
K

r2 + 1
− r

(
−
(

1

2

√
K

r2 + 1
r

)
,s

(w3w4 − w4w3)

+ 1

2

√
K

r2 + 1
r(−w3,sw4 + w4,sw3)

)]

+ �(G−H�2r2)

[
Φrϕ̇Γ

1

2

√
K

r2 + 1
+
(

1

2

√
K

r2 + 1
r

)
,s

(w1w2 − w2w1)

+ 1

2

√
K

r2 + 1
(w1,sw2 − w2,sw1)

]

= �

2

√
K

r2 + 1
[Hr2�2(Φϕ̇Γ r − rϕ̇r̈ + ṙ(ṙ ϕ̇Γ + rϕ̈Γ ))

+ (Φrϕ̇Γ + u̇v̈ − v̇ü)(G−H�2r2)]

= �

2

√
K

r2 + 1
[G(Φrϕ̇γ + u̇v̈ − v̇ü)−H�2r2ϕ̇Γ ].

Here we made use of the relation−w3,sw4 + w4,sw3 = −ṙ(ṙ ϕ̇Γ + rϕ̈Γ ) + rϕ̇Γ r̈ and
w1,sw2 − w2,sw1 = u̇v̈ − v̇ü as well as

u̇v̈ − v̇ü = ϕ̇Γ + ṙ(ṙ ϕ̇Γ + rϕ̈Γ )− rϕ̇Γ r̈.
Because ofGΦrϕ̇Γ = −(1/4)GHK�2r2ϕ̇Γ = −H�2r2ϕ̇Γ one finally obtains

II 11 = 1

2

√
K

r2 + 1
�[G(u̇v̈ − v̇ü)− 2H�2(uv̇ − vu̇)],

sincer2ϕ̇Γ = uv̇ − vu̇. By Proposition 8,

II 22 =
4∑

i,j=1

gij dxi(∂�)dxj (∇∂�N) = 0,

and using the equalities

G4w3 −G3w4 = (uw3 + vw4)�
2H = r�2w1H,

−G3w3 −G4w4 = (vw3 − uw4)�
2H = −r�2w2H
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in addition to the above relations, one also sees that II33 vanishes, since byPropositions 9
and 16,

II 33 =
4∑

i,j=1

gij dxi(∂ϕ)dxj (∇∂ϕN) = Ξ [−�ζ2(G1N1,ϕ −G4N3,ϕ −G3N4,ϕ)

+ �ζ1(G1N2,ϕ+G3N3,ϕ−G4N4,ϕ)− � sinϕ(−G4N1,ϕ +G3N2,ϕ +G2N3,ϕ)

+ � cosϕ(−G3N1,ϕ −G4N2,ϕ +G2N4,ϕ)]

=Ξ [−�ζ2(−G1N2 +G4N4 −G3N3)+ �ζ1(G1N1 −G3N4 −G4N3)

− � sinϕ(G4N2 +G3N1 −G2N4)+ � cosϕ(G3N2 −G4N1 +G2N3)]

= 1

2

√
K

r2 + 1
Ξ�[G1(ζ1w1 − ζ2w2)+G2r(−w3 cosϕ + w4 sinϕ)

+ζ1r(G4w3 −G3w4)+ ζ2r(−G3W3 −G4w4)+ cosϕ(−G4w1 −G3w2)

+ sinϕ(−G3w1 +G4w2)]

= 1

2

√
K

r2 + 1
Ξ�[(G−H�2r2)r2ϕ̇Γ − (G−H�2)r2ϕ̇Γ

+H�2r(ζ1w1r − ζ2w2r − w3 cosϕ + w4 sinϕ)]

= 1

2

√
K

r2 + 1
Ξ�[(−H�2r2 +H�2)r2ϕ̇Γ +H�2r(r3ϕ̇Γ − rϕ̇Γ )] = 0.

Analogously,

II 12 = gt (∂s,∇∂�N) =
4∑

i,j=1

gij dxi(∂s)dxj (∇∂�N) = 0,

II 13 = gt (∂s,∇∂ϕN) =
4∑

i,j=1

gij dx1(∂s)dxj (∇∂ϕN)

=Ξ�[N3,ϕ(−G4w2+G3w1)+N4,ϕ(−G3w2−G4w1)+G1(N1,ϕw2+N2,ϕw1)]

=Ξ�1

2

√
K

r2 + 1
[−rw4(−r�2w4H)−rw3(−r�2w3H)+G1(w

2
1 + w2

2)]

=Ξ�1

2

√
K

r2 + 1
[r2�2H +G−H�2r2]

= �1

2

√
K

r2 + 1

(
1 − 1

4
HK�2(r2 + 1)

)
G = 1

2

√
K

r2 + 1
K.

Finally,

II 32 =
4∑

i,j=1

gij dxi(∂ϕ)dxj (∇∂�N) = 0,

and the remaining components are determined by the symmetry of II. �
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In order to compute the invariants of II we need to express the second fundamental form
with respect to the orthonormal frameY1, Y2, Y3. In this case, we denote its components by
II ∗

ij . Letκ1, κ2 andκ3 be the eigenvalues of II in this base, regarded as a symmetric transfor-

mation onTM3
Γ . The mean curvature, the first elementary symmetric function associated

with II, is then given by the sumH = κ1 + κ2 + κ3 = II ∗
11 + II ∗

22 + II ∗
33. Now, writing

Yi = aij∂ηj one has

II ∗
ij = gt (Yi,∇Yj N) =

3∑
k,l=1

aikajlgt (∂ηk ,∇∂ηl N) =
3∑

k,l=1

aikajl II kl, (17)

i.e., II∗ = A · II · T A, where the coefficients ofA = (aij )i,j are determined byEqs. (3a) and
(3b). As a consequence of the previous theorem we obtain then the following result.

Corollary 1. The mean curvature of the hypersurfaces(M3
Γ , ht ) is given by

H =
√

2√
�4(r2 + 1)2 + t4

· kg,

wherekg := ((u̇v̈ − v̇ü)(r2 + 1) − 2(uv̇ − vu̇))/2 denotes the geodesic curvature of the
curveΓ in S2. In particular,M3

Γ is a minimal surface if and only ifkg = 0, i.e., if Γ is a
great circle inS2.

Proof. One easily sees that II∗
11 = II ∗

22 = 0 as well as

II ∗
33 =D2II 11 + 2DFII 13

= �

2

√
K

r2+1
(r2+1)K2Σ2[(r2 + 1)G(u̇v̈−v̇ü)−2(uv̇−vu̇)(H(r2+1)�2 +K)]

=
√

1

2
√
�4(r2 + 1)2 + t4

[(u̇v̈ − v̇ü)(r2 + 1)− 2(uv̇ − vu̇)].

SoH = II ∗
33. We further remark that II∗12 = II ∗

13 = 0 and

II ∗
23 = �

2

√
K

r2 + 1

DK√
h33

= K

4�

√
K

r2 + 1
= (r2 + 1)�2

√
2(�4(r2 + 1)2 + t4)3/4 .

Let us now compute the geodesic curvature ofΓ regarded as a curve inS2 � C ∪ {∞}
using the stereographic projection. With respect to the coordinatesu, v the induced metric
onS2 reads

gS2 = 1

(r2 + 1)2

(
1 0

0 1

)
. (18)

Writing v1, v2 for u, v the geodesic curvature ofΓ is then given by (see, e.g.[14])

kg = √
detgS2

∣∣∣∣ v̇1 v̇2

v̈1 +∑2
i,j=1Γ

1
ij v̇i v̇j v̈2 +∑2

i,j=1Γ
2
ij v̇i v̇j

∣∣∣∣ /(gij v̇i v̇j )
3/2,
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the Christoffel symbolsΓ ijk being obtained from the formulas(9), where now thegij denote
the components ofgS2 and thexi should be replaced by the correspondingvi . Note that
v̇2

1 + v̇2
2 = 1. We putL := (r2 + 1)2,M := −4/(r2 + 1)3 and obtain

Γ 1
11 = Γ 2

12 = Γ 2
21 = LM

2
v1, Γ 2

11 = −LM

2
v2,

Γ 1
12 = Γ 1

21 = Γ 2
22 = LM

2
v2, Γ 1

22 = −LM

2
v1,

a direct calculation then yields∣∣∣∣ v̇1 v̇2

v̈1 +∑2
i,j=1Γ

1
ij v̇i v̇j v̈2 +∑2

i,j=1Γ
2
ij v̇i v̇j

∣∣∣∣ = v̇1v̈2 − v̇2v̈1 + M

2L
(v1v̇2 − v2v̇1),

and by noting thatLM/2 = −2/(r2 + 1) andgij v̇i v̇j = √
detgS2 = 1/L one finally has

(up to a sign)

kg = 1
2((u̇v̈ − v̇ü)(r2 + 1)− 2(uv̇ − vu̇)),

and thus the assertion. �

The third elementary symmetric function associated with II is the Gauss curvature; it is
given byκ1 ·κ2 ·κ3 = det II∗ and equal to zero; the second one is the so-called second order
homogeneous curvature.

Corollary 2. The second order homogeneous curvature of the hypersurfaces(M3
Γ , ht ) is

κ1κ2 + κ1κ3 + κ2κ3 = − �4(r2 + 1)2

8(�4(r2 + 1)2 + t4)3/2 = S

8
.

Proof. As computed in the proof of the previous corollary, the components of II with respect
to the orthonormal frames(3a) and (3b)are given by

II ∗ =




0 0 0

0 0
K

4�

√
K

r2 + 1

0
K

4�

√
K

r2 + 1
H


 .

The roots of the characteristic polynomial

det(II ∗ − κ1) = −κ
(

−κ(H− κ)− K3

16�2(r2 + 1)

)

are thenκ1 = 0, κ2,3 = (−H±
√
H2 +K3/16�2(r2 + 1))/2. �
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Sinceu1|M3
Γ

= �2(r2 + 1)2, the three elementary symmetric functions associated with
the second fundamental form, i.e., essentially its traceH and the scalar curvatureS, are
manifestly invariant under the action of the isometry group U(2). The fact that the mean
curvature of the hypersurfacesM3

Γ is given in terms of the geodesic curvature ofΓ in S2

appears to be natural, since the geometry of the vector bundleT ∗P1(C) is determined by
the elliptic geometry ofP1(C) � S2. Note thatu̇v̈ − v̇ü is the geodesic curvature ofΓ as
a curve inC with respect to the Euclidean metric.

As an immediate consequence one obtains the following statement.

Corollary 3. LetΓ be a curve inS2 of bounded geodesic curvature. Then the functionals∫
Hα dM3

Γ and
∫
(κ1κ2 + κ1κ3 + κ2κ3)

β dM3
Γ

stay bounded forα > 3 andβ > 3/2, respectively.

Consequently, the Willmore functional
∫
H3 dM3

Γ remains unbounded, the hypersurfaces
M3
Γ thus being not accessible to integral geometry.

5. On the geodesic flow of the hypersurfacesM3
Γ

In this section, we will study the structure of the geodesic flow of the hypersurfaces
(M3

Γ , ht ) and compute the exponential growthµ∞(M3
Γ ) explicitly, at least in the case where

Γ is a generalized circle inC that arises by a Möbius transform from a circle inC with
center at the origin. In general,the exponential growthof an open, complete Riemannian
manifold(Mn, g) is defined as

µ∞ := lim sup
R→∞

1

R
log vol(BR(q0)),

whereq0 is a point inMn and vol(BR(q0)) denotes the volume of the ball of radiusR with
center atq0. If µ∞ = 0, one says thatMn hassubexponential growth. In caseMn has
finite volume, this quantity is not interesting, since then one always hasµ∞ = 0, but for
vol(Mn) = ∞ the exponential growth is directly related to the infimum of the essential
spectrum of the Laplace operator onMn. We will return to this point inSection 9. There
we will be able to calculate the exponential growth of(M3

Γ ) for arbitrary closed curves.
Let γ (τ) = Ψ (s(τ ), �(τ ), ϕ(τ )) be a smooth curve inM3

Γ andX(τ) = ∑3
j=1X

j(τ)

∂/∂ηj a vector field alongγ (τ). Its covariant derivative with respect toγ is given by the
formula

∇X
dt

=
3∑
k=1


 d

dt
Xk(τ )+

3∑
i,j=1

Γ ijkX
i(τ)γ̇ j (τ )


 ∂ηk ,

whereΓ ijk = ht (∇∂ηi ∂ηj , ∂ηk ) are the components of the Levi-Civita connection ofM3
Γ with

respect to the coordinate frame{∂s, ∂�, ∂ϕ}. For a geodesic it holds that∇γ̇ (τ )/dt = 0 and
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one obtains the system of differential equations

γ̈ k(τ )+
∑
i,j

Γ kij (γ (τ ))γ̇
i(τ )γ̇ j (τ ) = 0, k = 1,2,3. (19)

However, it turns out to be more convenient to determine the geodesic lines of the hypersur-
facesM3

Γ by considering the first integrals of the geodesic flow. Let us consider therefore
the geodesic system(TM3

Γ , E) ofM3
Γ , where the LagrangianE is given by the metric,

E : TM3
Γ → R, X �→ 1

2ht (X,X).

The functionE is a first integral of the geodesic flow, i.e. with respect to the coordinate reper
{∂s, ∂�, ∂ϕ} one has that

E(γ̇ (τ ))=1
2[h11ṡ

2(τ )+ 2(h12ṡ(τ )�̇(τ )+ h13ṡ(τ )ϕ̇(τ ))+ h22�̇
2(τ )+ h33ϕ̇

2(τ )]≡ E
is constant for any geodesic line. Let nowp = Ψ (s, �, ϕ) andz ∈ eiτ ∈ S1. Since the
coefficients of the metricht do not depend on the angle variableϕ, the map

κz : M3
Γ ∩M4 → M3

Γ ∩M4, κz(p) = Ψ (s, �, (ϕ + τ) mod 2π),

represents a one-parameter family of isometries. Consequently, using Noether’s theorem,
the function

M1 : T (M3
Γ ∩M4) → R, M1(X) := ht

(
d

dτ
κτ (p)|τ=0

)
= ht (∂ϕ,X)|p,

is a second first integral of the geodesic flow and a computation yields the formula

M1(γ̇ (τ )) = h13ṡ(τ )+ h33ϕ̇(τ ) ≡M1. (20)

For ṡ = 0 andϕ̇ = 0 it can be seen immediately fromEq. (19)for a geodesic or the relation
E(γ̇ (τ )) ≡ E that, for

�̇2 = 2E

(r2 + 1)K
= E

√
�4(r2 + 1)2 + t4
�2(r2 + 1)2

, s, ϕ constant, (21)

the curveγ (τ) = Ψ (s, �(τ), ϕ)must be a geodesic inM3
Γ .

We will assume from now on thatr ≡ r0 is constant and, in this case, determine the
distance of a pointp = Ψ (s, �, ϕ) to the setΓ ≡ {[0,0]} ⊂ M3

Γ . Sincer(s) ≡ r0 and
ϕ̇Γ (s) = ε/r0 are constant,ε = ±1, the coefficientshij also do not depend ons so that

µz : M3
Γ ∩M4 → M3

Γ ∩M4, µz(p) = Ψ ((s + τr) mod 2πr, �, ϕ),

is an additional one-parameter group of isometries and Noether’s theorem gives a third first
integral,

M2 : T (M3
Γ ∩M4) → R, M2(X) := ht

(
d

dτ
µτ (p)|τ=0

)
= ht (∂s, X)|p,

i.e.,

M2(γ̇ (τ )) = h11ṡ(τ )+ h13ϕ̇(τ ) ≡M2 (22)
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is constant for any geodesic line as well. FromEqs. (20) and (22)one obtains

2E = K(r2 + 1)�̇2 +M1ϕ̇ +M2ṡ, (23)

and

ṡ = ε
M1 − (r2 + 1)K�2ϕ̇

r�2K
, ϕ̇ = ε

M2 − (K +H�2)�2ṡ

r�2K
.

Solving the latter two equations with respect toϕ̇ andṡ yields

ϕ̇ =
(
εM2 − (K +H�2)�2M1

rK�2

)(
r�2K − (K +H�2)�2(r2 + 1)

r

)−1

= (4 + GH�2)M1 − 4εM2r

4�2G
,

as well as

ṡ = ε

4KG�2r
[4GM1 − (r2 + 1)(4(M1 − εM2r)K + 4�2HM1)]

= ε

16�2r
[4(G−K(r2 + 1)−H�2(r2 + 1))M1 + 4ε(r2 + 1)rKM2]

= −εrM1 + (r2 + 1)M2

4�2
K,

thus the functionss = s(τ ) andϕ = ϕ(τ) are determined by the function� = �(τ). Eq. (23)
now reads

2E = 1

G

[
4(r2 + 1)�̇2 + 1

4�2
(4(M2

1 − 2εM1M2r + (r2 + 1)M2
2)+ GH�2M2

1)

]
.

Note thatM2
1 − 2εM1M2r + (r2 + 1)M2

2 = (M1 − εM2r)
2 +M2

2 is non-negative.
By inserting the expressions forG andH into the previous equation one finally obtains the
following ordinary differential equation for� = �(τ):

�̇2 =
√
�4(r2+1)2+t4
�2(r2+1)2

E− 1

4�2(r2+1)

(
t4M2

1

�4(r2 + 1)3
+ (M1 − εM2r)

2 +M2
2

)
.

(24)

Thus, forr(s) = r0, all geodesicsγ (τ) = Ψ (s(τ ), �(τ ), ϕ(τ )) in M3
Γ ∩M4 are parame-

terized by the three parametersE,M1,M2. We are now able to compute the distance of a
pointp ∈ M3

Γ (r=r0) to the curveΓ .

Proposition 10. Let Γ = r0e
iϕΓ be a circle inC of radiusr(s) = r0. The distance of a

pointp0 = Ψ (s0, �0, ϕ0) ∈ M3
Γ ∩M4 to the curveΓ ⊂ M3

Γ is given by

dist(p0, Γ ) = 1

t
√

2
�2

0(r
2
0 + 1)F

(
1

2
,

1

4
,

3

2
,−�

4
0(r

2
0 + 1)2

t4

)
, (25)
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whereF denotes the hypergeometric function, which is defined forz ∈ C, |z| < 1, by the
series

F(α, β, γ, z) = 1 + αβ

γ · 1
z+ α(α + 1)β(β + 1)

γ (γ + 1) · 1 · 2
z2 + · · · ,

the parametersα, β, γ being arbitrary complex numbers, γ �= 0,±1,±2, . . . .

Proof. Let γ (E,M1,M2) : (0, τ0] → M3
Γ be a geodesic of positive energyE from

the curveΓ to the pointp0 with coordinatess0, �0, ϕ0. ForM1,M2 = 0 the geodesic
γ (E,M1,M2) is precisely the geodesic line(21)already described. IfM1 were not equal
to zero, at leasṫϕ would be different from zero almost everywhere; thenEq. (24)would
imply that there exists a critical value�crit > 0 for which

E
√
�4(r2 + 1)2 + t4 = r2 + 1

4

(
t4M2

1

�4(r2 + 1)3
+ (M1 − εM2r)

2 +M2
2

)
. (26)

For smaller values of� the right-hand side of(24) would become negative, implying that
�(τ) ≥ �crit > 0 must hold for allτ ∈ (0, τ0]. This means that forM1 �= 0 the geodesic
γ (E,M1,M2) can never reach the curveΓ . Assume thereforeM1 = 0,M2 being arbi-
trary. By(24)we have

�̇2 = 4
√
�4(r2 + 1)2 + t4E− (r2 + 1)2M2

2

4�2(r2 + 1)2
.

In case that 4t2E − (r2 + 1)2M2
2 < 0, this expression becomes negative for small�

so thatγ (E,M1 = 0,4t2E/(r2 + 1)2 < M2
2) can never reach the setΓ . However, for

4t2E− (r2 + 1)2M2
2 ≥ 0 we have thaṫ�2 is non-negative for allτ , as well as

ϕ̇ = −εr r2 + 1

2
√
�4(r2 + 1)2 + t4

M2, ṡ = (r2 + 1)2

2
√
�4(r2 + 1)2 + t4

M2,

so there are infinitely many geodesic linesγ (E,M1 = 0,4t2E/(r2 + 1)2 ≤ M2
2) reaching

the setΓ inM3
Γ in a spiral motion. In this case,Eq. (24)implies foru1(τ ) = �2(τ )(r2 +1)

the relation

u1,τ = 2��̇(r2 + 1) =
√

4E
√
u2

1 + t4 − (r2 + 1)2M2
2 > 0, (27)

i.e.,u1,τ as well asu1 are strictly monotone increasing as functions inτ and the pointp0 is
reached earliest, that is, for smallestτ0, in case thatM2 is also zero. Since the length of a
geodesic is given by

Lγ(E,M1,M2) =
∫ τ0

0
|γ̇ (E,M1,M2)| dτ =

∫ τ0

0

√
ht (γ̇ , γ̇ )dτ =

√
2Eτ0,

the distance of the pointp0 to the setΓ ⊂ M3
Γ must be given by the length of the geodesic

γ (E,M1 =M2 = 0).
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The integral
∫

1/ 4
√

ax2 + t4 dx cannot be represented by elementary functions and one
has ∫

dx
4
√

ax2 + t4 = x

t
F

(
1

2
,

1

4
,

3

2
,−ax2

t4

)
, (28)

whereF(α, β, γ, z) is the hypergeometric function introduced above. For Re(α+β−γ ) < 0
the defining series converges even in|z| ≤ 1; the hypergeometric function has an analytic
continuation for|z| > 1 and under the assumption that Reγ > Reβ > 0 it can be written
for all z as the integral

F(α, β, γ, z) = Γ (γ )

Γ (β)Γ (γ − β)
∫ 1

0
(−ζ )β−1(1 − ζ )γ−β−1(1 − ζz)−α dζ,

whereΓ denotes the Gamma function and|arg(−z)| < π is assumed in order to make the
integrand uniquely defined. Ifz is real, differentiation under the integral with respect toz
gives the stated equality(28) if one takes the relationF(m, β, β, z) = (1 − z)−m, m ∈ R,
β arbitrary, into account additionally. ForM1 = M2 = 0 we finally deduce from(27)

τ0 = 1

2
√
E

∫ τ0

0

u1,τ

4
√
u2

1 + t4
dτ = 1

2
√
E

∫ u1(τ0)

0

du1

4
√
u2

1 + t4

= 1

2t
√
E
u1(τ0)F

(
1

2
,

1

4
,

3

2
,−u

2
1(τ0)

t4

)
,

and thus

dist(p0, Γ ) = 1

t
√

2
�2

0(r
2 + 1)F

(
1

2
,

1

4
,

3

2
,−�

4
0(r

2 + 1)2

t4

)
,

finishing the proof. �

We are now in a position to compute the exponential growth of the hypersurfaceM3
Γ in

case thatΓ = ∂B(0, r0) is a circle inC. Note that we can estimate the volume of the ball
with radiusR around a pointq0 ∈ Γ ⊂ M3

Γ by the volume of the union over allR-balls
around points ofΓ , thus obtaining

vol(BR(q0)) ≤ vol


⋃
q∈Γ
BR(q)


 =

∫ 2π

0

∫ �R

0

∫ 2πr

0

√
detht ds ∧ d� ∧ dϕ

= 2π
√

8
∫ �R

0

∫ 2πr

0

�3(r2 + 1)
4
√
�4(r2 + 1)2 + t4

ds ∧ d�

= 4π2r
√

8

3(r2 + 1)
[(�4

R(r
2 + 1)2 + t4)3/4 − t3],

since by our previous considerations⋃
q∈Γ
BR(q) = {p = Ψ (s, �R, ϕ) ∈ M3

Γ : s ∈ [0,2πr), ϕ ∈ [0,2π)},
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where�R is given by the expression(25) for R = dist(p, Γ ). The analytic continuation of
F(α, β, γ, z) for |z| > 1 is given by the formula

F(α, β, γ, z)= Γ (γ )Γ (β − α)
Γ (β)Γ (γ − α)(−z)

−αF
(
α, α + 1 − γ, α + 1 − β, 1

z

)

+Γ (γ )Γ (α − β)
Γ (α)Γ (γ − β)(−z)

−βF
(
β, β + 1 − γ, β + 1 − α, 1

z

)
,

so that for�0 being big enough the distance ofp0 = Ψ (s0, �0, ϕ0) to the setΓ is given by

dist(p0, Γ )= 1

t
√

2
�2

0(r
2+1)

[
Γ (3/2)Γ (−1/4)

Γ (1/4)Γ (1)

t2

�2
0(r

2+1)
F

(
1

2
,0,

5

4
,

−t4
�4

0(r
2+1)2

)

+Γ (3/2)Γ (1/4)
Γ (1/2)Γ (5/4)

t

�0
√
r2 + 1

F

(
1

4
,−1

4
,

3

4
,

−t4
�4

0(r
2 + 1)2

)]

= Γ (3/2)Γ (−1/4)

Γ (1/4)Γ (1)

t√
2

+ Γ (3/2)Γ (1/4)

Γ (1/2)Γ (5/4)

√
r2 + 1

2
�0

×
(

1 + 1

12

t4

�4
0(r

2 + 1)2
+ · · ·

)
,

implying that dist(p0, Γ ) is proportional to�0
√
r2 + 1 for 1 $ �0. We obtain forq0 ∈ Γ

that

lim
R→∞

1

R
log vol(BR(q0))

≤ lim
�→∞

[
log

4
√

8π2r

3(r2 + 1)
+ log((�4(r2 + 1)2 + t4)3/4 − t3)

]

×

Γ (3/2)Γ (−1/4)

Γ (1/4)Γ (1)

t√
2

+ Γ (3/2)Γ (1/4)

Γ (1/2)Γ (5/4)

√
r2 + 1

2
�

×
(

1 + 1

12

t4

�4(r2 + 1)2
+ · · ·

) 
−1

= lim
�→∞

3�3(r2 + 1)2

�4(r2 + 1)2 + t4 − t3 4
√
�4(r2 + 1)2 + t4

×

Γ (3/2)Γ (1/4)
Γ (1/2)Γ (5/4)

√
r2 + 1

2

(
1 − 1

4

t4

�4(r2 + 1)2
+ · · ·

)
−1

= 0,

the corresponding limes superior therefore being zero, too. By isometry arguments we thus
obtain the following proposition.
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Proposition 11. LetΓ = ∂B(0, r0) be a circle inC with center at the origin and radius
r0. Thenµ∞(M3

AΓ ) = 0 for all A ∈ U(2).

We want to finish this section with some remarks concerning closed geodesics inM3
Γ ,

where we assume again thatΓ is a circle inC of radiusr(s) = r0. In this caseM3
Γ is foliated

by the two-dimensional toriT 2
�0,r0

, �0 > 0 being constant. Letγ (τ) = Ψ (s(τ ), �0, ϕ(τ )) :

[0, Lγ ] → T 2
�0,r0

⊂ M3
Γ be a geodesic line parameterized by arc length. Since�̇ = 0, s̈

and ϕ̈ are also zero. Relation(23) then readsM2ṡ = 2E −M1ϕ̇ and Eq. (26) must
hold, representing a condition onE = E(�0, r0) for given values ofM1,M2. Now, by the
(S1 × S1)-symmetry ofT 2

�0,r0
,

Ψ (s0, �0, ϕ0) = Ψ (s0 + 2πr0 · n, �0, ϕ0 + 2π ·m), n,m ∈ Z.

Writing s(τ ) = s0 + ṡτ , ϕ(τ) = ϕ0 + ϕ̇τ we see thatγ (τ) is a closed geodesic if and only
if ṡLγ = 2πr0n andϕ̇Lγ = 2πm are satisfied, i.e., if

ṡ

ϕ̇
= r0

n

m
∈ r0 · Q∗, n,m �= 0,

of course, ifn orm are zero,γ (τ) is also a closed geodesic. Inserting the expressions forṡ

andϕ̇ computed above we obtain for the previous condition

−εr0M1 + (r2
0 + 1)M2

4(M1 − εr0M2)+ GH�2
0M1

∈ r0 · Q∗.

Note thatGH = 4t4/�6(r2 + 1)3. Taking all together we find as solutions forM1 andM2

M1 = m(r2
0 + 1)/4 + εnr20

�4
0(r

2
0 + 1)2 + t4 �4

0(r
2
0 + 1)2, M2 = r0

r2
0 + 1

(n+ εM1),

wheren,m are integers. The curveγ (E,M1,M2) is then a closed geodesic inT 2
�0,r0

, where
E,M1,M2 depend on�0, r0, n,m as explained above. In particular, there must be at least
countably many closed geodesics inT 2

�0,r0
⊂ M3

Γ .

6. Integrals of subharmonic functions on the hypersurfacesM3
Γ

In this section we will show that theLp-kernel of the Laplacian on the hypersurfaces
(M3

Γ , ht ) becomes trivial for allp ≥ 1, wheret ≥ 0 andΓ are arbitrary. We will base our
considerations on the much more general work of Greene and Wu[10], who studied inte-
grals of certain generalized subharmonic functions on connected non-compact Riemannian
manifolds admitting a canonical exhaustion function and showed that these integrals cannot
be bounded. More precisely, they showed that the following theorem holds.

Theorem 3(Greene and Wu).Let M be a connected non-compact orientedC∞ Riemannian
manifold. Suppose that there exists a continuous proper functionϕ : M → R and a compact
setKϕ ⊂ M such that:
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(a) ϕ|M\Kϕ is C2;
(b) ϕ|M\Kϕ is uniformly Lipschitz continuous;
(c) ϕ|M\Kϕ is subharmonic.

Denote byΣ(M) the closure of the set of allC∞ subharmonic functions inC0(M). Then,
if f is a non-negative function inΣ(M) such that

{p ∈ M : f (p) > 0, ϕ(p) > max
Kϕ
ϕ,gradϕ(p) �= 0} �= ∅,

there exist constantsAf > 0 andτ0 such that∫
M
ϕ
τ

f dM ≥ Af (τ − τ0)

for all τ ≥ τ0, whereMϕ
τ denotes the set of allp ∈ M such thatϕ(p) ≤ τ ; in particular,∫

M
f dM = +∞.

A description of the setΣ(M) is given by the following proposition.

Proposition 12 (Greene and Wu).Let M be a non-compactC∞ Riemannian manifold.
Then the following functions are inΣ(M):

(1) any functionf : M → R that is the limit uniformly on compact subsets of M of a
sequence of functions inΣ(M);

(2) C2 subharmonic functions;
(3) up, where u is aC2 non-negative subharmonic function andp ≥ 1;
(4) |u|p where u is a harmonic function andp ≥ 1;
(5) any geodesically convex function.

In general, the scalar Laplacian on a Riemannian manifold(Mn, g), acting onC∞ func-
tions, is given byOf = −div(gradf ), where for a vector fieldX ∈ X(Mn) its divergence
with respect to an orthonormal frame{Y1, . . . , Yn} is given by

div(X) =
n∑
i=1

g(∇YiX, Yi) =
n∑
i=1

Yi(X
i)+

n∑
i,j=1

Xjωji (Yi).

Here theXi denote the components ofX and theωij the connection forms of the Levi-Civita
connection∇ ofMn. In the following, we will show that the above results also apply for the
considered hypersurfacesM3

Γ ,Γ being arbitrary, obtaining in particular the vanishing of the
Lp-kernel of the Laplacian even in caseM3

Γ is not complete. Let us first start considering
the function

ϕ∗ := �
√
r2 + 1,

which isC∞ onM3
Γ ∩M4. One calculates with respect to the orthonormal frames(3a) and

(3b)

Y1(ϕ
∗) = 1√

h22

√
r2 + 1, Y1Y1(ϕ

∗) = − 1

2h22
(logK),�

√
r2 + 1,
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and thus

Oϕ∗ = −Y1Y1(ϕ
∗)−

3∑
i=1

Y1(ϕ
∗)ω1i (Yi) = 1

h22

(
1

2
(logK),� − 2

�

)√
r2 + 1

=
√
�4(r2 + 1)2 + t4
2�3(r2 + 1)3/2

(
t4

�4(r2 + 1)2 + t4 − 2

)
.

Because of sup� t
4(�4(r2 + 1)2 + t4)−1 = 1, it follows thatϕ∗ is subharmonic and one

computes further that

|gradϕ∗|2 = Y 2
1 (ϕ

∗) = K−1 =
√
�4(r2 + 1)2 + t4

2�2(r2 + 1)
.

We define now theC∞ functionλ : R → [0,1) by λ(x) = e−1/x2
for x > 0 andλ(x) = 0

for x ≤ 0 and put

µ(x) :=
∫ x
−∞ λ(y)λ(1 − y)dy∫ +∞
−∞ λ(y)λ(1 − y)dy . (29)

The functionµ : R → [0,1] isC∞ too, monotone, equal to zero forx ≤ 0 and 1 forx ≥ 1.
Let 0< s0 < LΓ . Then

ϕ := �
√
r2 + 1µ(�)

isC∞ onM3
Γ and subharmonic onM3

Γ \Kϕ , where

Kϕ := {p = p(s, �, ϕ) ∈ M3
Γ : � ≤ 1, s ≤ s0}.

Note thatKϕ is compact and thatϕ is proper, i.e.,

ϕ−1[0, κ] = {p ∈ M3
Γ : �

√
r2 + 1µ(�) ≤ κ}

is compact for allκ ∈ R+
0 . We show thatϕ is globally Lipschitz. In order to do so, let

us first remark that|gradϕ| ≤ Bϕ onM3
Γ , whereBϕ is a constant, since|gradϕ|2 tends

asymptotically to 1/2 onM3
Γ \Kϕ and, as a smooth function, remains bounded onKϕ . Now

let p andq be two points onM3
Γ , andγ (τ) the shortest geodesic between them so that

dist(p, q) = Lγ ; we assume thatγ is parameterized by arc length. Since

ht (gradϕ(γ (τ0)), γ̇ (τ0)) = dϕ(γ (τ0))(γ̇ (τ0)) = d

dτ
ϕ(γ (τ ))

∣∣∣∣
τ=τ0

,

one has by Cauchy–Schwarz that

|ϕ(p)− ϕ(q)| =
∣∣∣∣
∫ Lγ

0

d

dτ
ϕ(γ (τ ))dτ

∣∣∣∣ =
∣∣∣∣
∫ Lγ

0
ht (gradϕ(γ (τ)), γ̇ (τ ))dτ

∣∣∣∣
≤
∫ Lγ

0
|gradϕ(γ (τ))||γ̇ (τ )| dτ ≤ Bϕ dist(p, q),
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i.e., ϕ is uniformly Lipschitz continuous onM3
Γ . Summing up we obtain the following

proposition.

Proposition 13. On the connected non-compact orientedC∞ Riemannian manifolds
(M3

Γ , ht ) there exists, for everyt �= 0 and every curveΓ , a proper continuous function
ϕ : M3

Γ → R and a compact setKϕ ⊂ M3
Γ such that:

(a) ϕ isC∞,
(b) ϕ is uniformly Lipschitz,
(c) ϕ|M3

Γ \Kϕ is subharmonic.

In particular, the conclusions ofTheorem 3hold.

Note that the above proposition is also true in caset = 0, i.e., for the non-completeC∞
Riemannian manifolds(M3

Γ ∩M4, h0). As a consequence of the proposition we obtain the
following vanishing corollary.

Corollary 4. Let p ≥ 1. There exist noLp-harmonic functions, on the hypersurfaces
(M3

Γ , ht ) for arbitrary t ∈ R and curvesΓ .

Proof. Let ϕ andKϕ be given as in the previous proposition and letu be a harmonic
function onM3

Γ . By Proposition 12one has|u|p ∈ Σ(M3
Γ ) for all p ≥ 1. Now, by the

Aronszajn–Cordes uniqueness theorem for second order differential operators
∑

|α|≤2 aα(x)

∂α with elliptic metric principal symbol[1] u cannot vanish identically onM3
Γ \Kϕ unless

it vanishes everywhere. Therefore, foru not being trivial, the set{m ∈ M3
Γ : |u|p(m) >

0, ϕ(m) > maxKϕϕ,gradϕ(m) �= 0} is not empty, and byTheorem 3there exist constants
A andτ0 such that∫

M
ϕ
τ

|u|p dM3
Γ ≥ A(τ − τ0)

for all τ ≥ τ0. In particular, KerLp(∆) = {0} for all p ≥ 1. �

7. Einstein andT -Killing spinors on the hypersurfacesM3
Γ

In the sequel, we will consider the Dirac operatorD on the hypersurfacesM3
Γ , whose

geometry has been studied in the previous sections. Fort > 0, the homotopy type ofM3
Γ

is given byR2 ×Γ/{±1}. If the curveΓ is not closed,M3
Γ cannot be complete and admits

only one spin structure. OtherwiseM3
Γ has the same homotopy type as the circleS1 and,

consequently, admits two spin structures. The trivial spin structure is characterized by the
fact that there exists a global trivialization of the Spin(3)-principal bundle covering an arbi-
trary orthonormal frame bundle, while the non-trivial spin structure admits a trivialization
of this kind only locally. On the other hand, the unique spin structure of the Eguchi–Hanson
spaceH 2 induces a spin structure on the hypersurfaceM3

Γ ⊂ H 2 by reduction of the former
with respect to the normal vector field ofM3

Γ . It turns out that the induced spin structure
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is the trivial one if and only if the winding number of the closed curveΓ is even. In the
following most of the results will be derived for the induced spin structure, though some of
them that follow from purely geometric arguments hold for both spin structures.

First we will try to determine solutions to the Dirac equation that are also solutions to the
Einstein equation and we will show that the aforementioned hypersurfaces do not admit such
solutions in caset �= 0. Nevertheless, it is possible to construct such solutions explicitly by
deformation into the singular situation, though these solutions are no longer complete. In
the complete case and ifM3

Γ is a minimal surface, one can further show the existence of a
spinor field satisfying a generalized Killing equation for spinors.

Let e1, . . . , en denote the standard basis of the Euclidean spaceRn and introduce the
complex two-dimensional matrices

g1 =
(

i 0

0 −i

)
, g2 =

(
0 i

i 0

)
, E =

(
1 0

0 1

)
, T =

(
0 −i

i 0

)
.

In casen = 2m, the spin representation of then-dimensional complex Clifford algebraCcn
is given by the isomorphism

κ2m : Cc2m � End(∆2m), κ2m(ej ) := E ⊗ · · · ⊗ E ⊗ gα(j) ⊗ T ⊗ · · · ⊗ T ,
wherej = 1, . . . ,2m andα(j) is equal to 1 and 2 forj odd and even, respectively. For
n = 2m+ 1 one has the representation

κ2m+1 : Cc2m+1 � End(∆2m+1)⊕ End(∆̂2m+1)
pr1→End(∆2m+1),

κ2m+1(ej ) := κ2m(ej ), κ2m+1(e2m+1) := −iT ⊗ · · · ⊗ T ,
where∆2m = ∆2m+1 = ∆̂2m+1 = C2m denote the corresponding representation spaces
as well as the representations itself. The induced representations of Spin(n) ⊂ Ccn will be
denoted by the same symbols.

We denote byΣ(M2
Γ ) or simplyΣ the spinor bundle considered in each case ofM3

Γ , by
{·, ·} its Hermitian inner product and byΓ (Σ) the space of smooth sections inΣ . Further,
we identify the tangent bundleTM3

Γ and the cotangent bundleT ∗M3
Γ with the aid ofht .

The Clifford multiplicationTM3
Γ ⊗RΣ(M3

Γ ) → Σ(M3
Γ ) of a spinor and a vector can then

be extended naturally to a multiplicationΛ(M3
Γ )⊗RΣ(M3

Γ ) → Σ(M3
Γ ) of a spinor and a

form. The Levi-Civita connection∇ of (M3
Γ , gt ) induces a covariant derivative inΣ(M2

Γ ),
which we will denote by∇, too. With respect to an orthonormal frame{Y1, Y2, Y3} one has
for ∇ the local representation

∇ : Γ (Σ) → Γ (T ∗(M3
Γ )⊗Σ), ∇ψ = dψ + 1

2

3∑
i<j

ωijYi · Yj · ψ,

where theωij are the connection forms of the Levi-Civita connection∇. The Dirac operator
D : Γ (Σ) → Γ (Σ) onM3

Γ is then locally given by

Dψ =
3∑
i=1

Yi · ∇Yiψ,
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whereX · ψ denotes the Clifford multiplication of a vector field with a spinor; in the
realization of the complex Clifford algebraCc3 � M(2,C) ⊕ M(2,C) given above, the
vectorsY1, Y2, Y3 are represented by the matricesg1, g2,−iT , respectively. Note that in the
three-dimensional Clifford algebra it hold thatei = εijkej ek, whereεijk denotes the totally
skew symmetric tensor. With respect to the global trivialization(3a) and (3b)the 1-forms
ωij have been computed inProposition 2. Let us now introduce the following definitions.

Definition 1. A non-trivial spinor fieldψ on a Riemannian spin manifold(Mn, g) with
n ≥ 3 is called apositiveresp.negative Einstein spinorwith eigenvalueλ ∈ R if it is a
solution of the Dirac equation and the Einstein equation

Dψ = λψ, Ric − 1
2Sg= ±1

4Tψ,

whereTψ(X, Y ) = Re〈X ·∇Yψ+Y ·∇Xψ,ψ〉 is the symmetric(0,2)-tensor field defined
byψ , the energy–momentum tensor ofψ .

As shown in[8], in dimension 3 and in case that the scalar curvature does not vanish, the
existence of an Einstein spinor is equivalent to the existence of a so-called WK spinor.

Definition 2. Let (Mn, g) be a Riemannian spin manifold whose scalar curvatureS does
not vanish anywhere. A non-trivial spinor field onM satisfying the field equation

2(n− 1)S∇Xψ = ndS(X)ψ + 2λ
n− 1

n− 2
(2 Ric(X)− SX) · ψ +X · dS · ψ (30)

is called aWK spinorwith WK numberλ ∈ R.

For generaln each solutionψ of the field equation (30)with λS < 0 andλS > 0
corresponds to a positive and negative Einstein spinor with eigenvalueλ, respectively. For
the existence of a WK spinor the following necessary condition is known[8].

Proposition 14 (Friedrich and Kim).Let (Mn, g) be a Riemannian spin manifold with
non-vanishing scalar curvature andψ a WK spinor on(Mn, g) with WK numberλ. Then

4(n− 1)λ2[(n2 − 5n+ 8)S2 − 4|Ric|2]

= (n− 2)2[(n− 1)S3 + n|dS|2 + 2(n− 1)S(OS)]. (31)

We show in the following that, fort �= 0, the condition(31) cannot be fulfilled onM3
Γ

for any choice of the curveΓ .

Proposition 15. For t �= 0and for any spin structure the hypersurfaces(M3
Γ , ht ) do not ad-

mit solutions of the WK equation and, hence, there can be no solution to the Dirac–Einstein
system.

Proof. Assume that a WK spinor with WK numberλ is given on(M3
Γ , ht ). Then, by

Proposition 14

8λ2(2S2 − 4|Ric|2) = 2S3 + 3|dS|2 + 4S(OS) (32)
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must hold, whereS has been computed inTheorem 1using the relation(r2+1)S,s = rṙ�S,�
one computes with respect to the trivialization(3a) and (3b)

Y1(S) = 1√
h22

∂

∂�
S = − 1√

h22

�3(r2 + 1)2

(�4(r2 + 1)2 + t4)5/2 (4t
4 − 2�4(r2 + 1)2),

Y2(S) = 1√
h33

∂

∂ϕ
S = 0, Y3(S) = D

∂

∂s
S + E ∂

∂�
S + F ∂

∂ϕ
= 0,

thus obtaining for the Laplacian ofS that

−OS = div gradS = Y1Y1(S)+
3∑
i=1

Y1(S)ω1i (Yi)

= Y1Y1(S)+ Y1(S)
1√
h22

(
1

2
(logh33),� − (logD),�

)

= Y1Y1(S)+ Y1(S)
2√
h33
,

compareProposition 2. One computes further that

Y1Y1(S)= 1√
h22

(
1√
h22
S,�

)
,�

= 1

h22
S,�2 − 1

2(h22)2
h22,�S,�

= −2(4t8 − 20(1 + r2)2t4�4 + 3(1 + r2)4�8)

(�4(r2 + 1)2 + t4)3
as well as

Y1(S)
2√
h33

= −2
2t4 − �4(r2 + 1)2

(�4(r2 + 1)2 + t4)2 ,

obtaining forOS the expression

OS = 8t8 − 18�4t4(r2 + 1)2 + �8(r2 + 1)4

(�4(r2 + 1)2 + t4)3 .

Since|dS|2 = Y1(S)
2, |Ric|2 = Tr Ric2 = R2

11 + R2
22 + R2

33, one obtains

8λ2 1

(�4(r2 + 1)2 + t4)3 (−24t8 − 4�4t4(r2 + 1)2)

for the left-hand side of(32)and

−2

(�4(r2 + 1)2 + t4)3S[−8t8 + 48�4(r2 + 1)2t4]

for the right-hand side, so that the condition(32) reads

λ2(−12t8 − 2�4(r2 + 1)2t4) = S(t8 − 6�4(r2 + 1)2t4),
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and one sees that in caset �= 0, it cannot be satisfied for any choice of the curveΓ . Note that
since the integrability condition(32) is purely geometric, the assertion of the proposition
holds for any spin structure. �

Only for t = 0 the condition(32) is fulfilled for arbitrary values ofλ, since then both
sides vanish. In this case the hypersurfaces(M3

Γ , h0) are no longer complete for any curve,
the metric becoming degenerate along the exceptional curve; one finds thatK = G = 2,
H = 0 and the Ricci tensor and the scalar curvature are

Ric = 1

2�6(r2 + 1)3




0 0 0

0 −�4(r2 + 1)2 0

0 0 −�4(r2 + 1)2


 ,

S = − 1

�2(r2 + 1)
. (33)

In the following we show that, in this case, solutions of the Dirac–Einstein system can be
constructed explicitly on(M3

Γ ∩M4, h0) for an arbitrary choice of the curveΓ .
In order to do so letψ be a non-trivial spinor field onM3

Γ that satisfies the spinorequation
(30) for n = 3,

∇Xψ = 3

4S
dS(X)ψ + 2λ

S
Ric(X) · ψ − λX · ψ + 1

4S
X · dS · ψ.

Puttingψ = √−Sχ , the above equation can be reformulated into an equation forχ . Using
∇(fψ) = df ⊗ψ + f∇ψ for a functionf and the relationX · dS = −dS(X)+X× dS
in the three-dimensional Clifford algebra yields

∇Xχ = λ

(
2

S
Ric(X)−X

)
· χ + 1

4S
(X × dS) · χ. (34)

As already shown, with respect to the base(3a) and (3b)only Y1(S) is different from zero
and one obtains

X × dS = ω3(X)Y1(S)Y2 − ω2(X)Y1(S)Y3.

Further, one has

2

S
Ric(X)−X = 2R11 − S

S
ω1(X)Y1 + 2R22 − S

S
ω2(X)Y2 + 2R33 − S

S
ω3(X)Y3.

In the realization of the complex Clifford algebra given above one then obtains due to
Proposition 2that

∇χ = dχ + 1

2

∑
i<j

ωijYi · Yj · χ = dχ + 1

2

(
iω23 −ω12 − iω13

ω12 − iω13 −iω23

)(
χ1

χ2

)

= dχ + 1

2
√
h22

[
(logh33),�

2

(
0 −ω2

ω2 0

)
+ (logD),�

(
0 iω3

iω3 0

)](
χ1

χ2

)
.
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Now, if t = 0,

2R11 − S
S

= −1,
2R22 − S

S
= 0,

2R33 − S
S

= 0

as well as

(logD),� = − 1

�
, (logh33),� = 2

�
, (logS),� = −2

�
.

Summing up,(34)now reads(
dχ1

dχ2

)
=
{
λ

(
−iω1 0

0 iω1

)
− 1

2�
√
h22

(
0 iω3 + ω2

iω3 − ω2 0

)

− 1

2�
√
h22

(
0 −ω2 − iω3

ω2 − iω3 0

)}(
χ1

χ2

)

= λ
(

−iω1 0

0 iω1

)(
χ1

χ2

)
,

the summands(X × dS)/4S and
∑
i<j ωij (X)ei · ej /2 canceling out each other. Since

dω1 = 0, the system above can be integrated. Taking into account the equality dχj =∑3
i=1 Yi(χj )ω

i = χj,s ds + χj,� d� + χj,ϕ dϕ and the expressions for theωi one derives
the system of partial differential equations

∂

∂s

(
χ1

χ2

)
=
(
f0 0

0 f̄0

)(
χ1

χ2

)
,

∂

∂�

(
χ1

χ2

)
=
(
f2 0

0 f̄2

)(
χ1

χ2

)
,

where

f0 = −iλ
rṙ�

r2 + 1

√
(r2 + 1)K, f2 = −iλ

√
(r2 + 1)K.

are functions in the variables� ands. Note that(r2 + 1)f0 = rṙ�f2. Further, one has

�
∂

∂s
f2 = �

(
−λi

1

2

√
K

r2 + 1
2rṙ

)
= f0,

showing that

χ1 = ef2(s)�, χ2 = e−f2(s)�

is a solution of the above system. Transforming back to the original WK equation yields
the following proposition.

Proposition 16. Consider the family of hypersurfaces(M3
Γ ∩ M4, h0), whereΓ is an

arbitrary curve. Then

ψ = 1

�
√
r2 + 1


 e−λ

√
2(r2+1)�i

eλ
√

2(r2+1)�i



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is a WK spinor of length|ψ |2 = −S|χ |2 = −S(|χ1|2 + |χ2|2) = −2S and WK number
λ ∈ R. Thus, the normalized spinor

√
−S

|λ||ψ |2ψ = 1

�
√

2(r2 + 1)|λ|


 e−λ

√
2(r2+1)�i

eλ
√

2(r2+1)�i




is an Einstein spinor onM3
Γ ∩M4 with eigenvalueλ.

The homotopy type ofM3
Γ ∩ M4 is given byR∗+ × S1 × Γ ; therefore it has at least

two spin structures, the one involved here being determined by the global trivialization(3a)
and (3b). Recall thatM3

Γ ∩ M4 is parameterized by the length parameters of the curve
Γ (s) = r(s)eiϕΓ (s) ⊂ C and the fiber parameters 0< � < ∞, 0 ≤ ϕ < 2π . The metric
h0 is then given by the formula

h0 = 2(�2 ds2 + (r2 + 1)(d�2 + �2 dϕ2))+ rṙ� ds d� + r2ϕ̇Γ �
2 ds dϕ,

and the Ricci tensor has rank 2, seeEq. (33). Similar examples of WK spinors on a
three-dimensional non-complete Riemannian manifold with negative scalar curvature have
been constructed in[8].

We introduce now the notion of aT -Killing spinor [9].

Definition 3. Let (Mn, g) be a Riemannian spin manifold. A spinor fieldψ without zeros
will be called aT-Killing spinor if the trace Tr(T̂ψ) = (1/‖ψ‖2)Tr(Tψ) is constant andψ
is a solution of the field equation

∇Xψ = −1
2 T̂ψ (X) · ψ, X ∈ X(Mn).

HereT̂ψ (X, Y ) = (1/‖ψ‖2)Tψ(X, Y ) is the energy–momentum tensor of the normalized
spinorψ/‖ψ‖.

As remarked at the beginning,(H 2, gt ) is endowed with a hyper-Kähler structure and
therefore Ricci-flat and self-dual. Due to this, there is a parallel spinor onH 2, and the study
of its restriction toM3

Γ will enable us to construct aT -Killing spinor explicitly. There we
follow a similar construction carried out in[7,9], where the restriction of a parallel spinor
on the Euclidean spaceR3 to an isometrically immersed closed 2-surface of constant mean
curvature is considered, yielding examples ofT -Killing spinors on any surface of constant
mean curvature inR3.

We consider first the restriction of the spinor bundle ofH 2 to the submanifoldM3
Γ

(compare[2]). Note that the Clifford representation∆2k+2 can be constructed directly from
the Clifford representation∆2k+1 by setting

∆2k+2 := ∆2k+1 ⊕∆2k+1,

and defining the Clifford multiplication in∆2k+2 by means of the Clifford multiplication
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in ∆2k+1,

ei · (ψ1 ⊕ ψ2) := ei · ψ1 ⊕ (−ei · ψ2), 1 ≤ i ≤ 2k + 1,

e2k+2 · (ψ1 ⊕ ψ2) := ψ2 ⊕ (−ψ1).

The mapping

f := ik+1(e1, . . . , e2k+2) : ∆2k+2 → ∆2k+2

is an automorphism of the corresponding Spin(2k + 2)-representation, and because of
(e1, . . . , e2k+2)

2 = (−1)k+1 it turns out to be an involution. Thus the spin representation
∆2k+2 decomposes into the eigensubspaces off , and we denote them by∆±

2k+2. Explicitly,
one has

f (ψ1 ⊕ ψ2) = ik+1(e1, . . . , e2k+1 · ψ2 ⊕ e1, . . . , e2k+1 · ψ1),

yielding in particular fork = 1 the relation

f (ψ1 ⊕ ψ2) = −(e1e2e3 · ψ2 ⊕ e1e2e3 · ψ1) = ψ2 ⊕ ψ1,

sincee1e2e3 = −1 in the three-dimensional Clifford algebra. In this way, one obtains

∆±
4 = {ψ1 ⊕ ψ2 ∈ ∆4 : ψ2 = ±ψ1},

i.e., a spinor in∆+
4 or ∆−

4 uniquely defines a spinor in∆3 and vice versa. Thus we have
defined two isomorphisms of Spin(3) representations,

∆3 � ∆±
4 : ϕ1 �→ ϕ1 ⊕ (±ϕ1). (35)

Since the four-dimensional spin manifold(H 2, gt ) is simply connected, it has only one spin
structure, and we denote the corresponding spinor bundle byΣH2. It splits into the subbun-
dlesΣ+

H2 andΣ−
H2, according to the above decomposition of∆4, and as a consequence of

∆4 = ∆3 ⊕∆3 and(35)we have the identifications

ΣH2|M3
Γ

� Σ ⊕Σ, Σ � Σ±
H2|M3

Γ

,

whereΣ is the induced spinor bundle onM3
Γ . Consider now a spinor fieldϕ+ ∈ Γ (Σ+

H2)

and its restrictionϕ+
|M3
Γ

= ϕ1 ⊕ ϕ1 to M3
Γ , whereϕ1 ∈ Γ (Σ) is a three-dimensional

spinor field. In particular, note that for a field of unit normal vectors onM3
Γ the relation

N · (ϕ1 ⊕ ϕ1) = ϕ1 ⊕ (−ϕ1) holds, according to the realization of∆4 given above. By
using the local formulas for the different covariant derivatives one obtains for the spinorial
derivative ofϕ+ onM3

Γ the relation

∇ΣH2

X ϕ+ = dϕ+(X)+ 1

2

∑
1≤i<j≤3

ωij (X)Yi · Yj · (ϕ1 ⊕ ϕ1)

+1

2

∑
1≤i<4

ωi4(X)Yi ·N · (ϕ1 ⊕ ϕ1)

= (∇ΣX ϕ1 ⊕ ∇ΣX ϕ1)− 1

2
(∇H2

X N · ϕ1 ⊕ ∇H2

X N · ϕ1)
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for every vector fieldX ∈ TM3
Γ , sinceωij (X) = gt (∇H2

X Yi, Yj ) = ht (∇M
3
Γ

X Yi, Yj ) and

ωi4(X) = gt (∇H2

X Yi,N) = −ht (Yi,∇H2

X N). Here and until the end of this section
{Y1, Y2, Y3} denotes an arbitrary section in the frame bundle ofM3

Γ . Since one part of
the Weyl tensor of the Eguchi–Hanson spaceH 2 vanishes, we can assume that the parallel

spinor onH 2 is contained inΓ (Σ+
H2) and given byϕ+. Hence∇ΣH2

X ϕ+ = 0, and with

II (X) = ∇H2

X N we obtain the equation

∇ΣX ϕ1 = 1
2II (X) · ϕ1

for the corresponding three-dimensional spinorϕ1. Further, since II is a symmetric bilinear
form,

∑3
i=1 Yi · II (Yi) = −H is a scalar and one obtains

DΣϕ1 =
∑

Yi · ∇ΣYi ϕ1 = −H
2
ϕ1,

moreover,ϕ1 has constant length because it is given by the restriction of a parallel spinor.
We summarize these results in the following lemma.

Lemma 1. Let Σ denote the induced spinor bundle ofM3
Γ . Then there exists a spinor

ψ∗ ∈ Γ (Σ) onM3
Γ with

∇ΣX ψ∗ = −1
2 II (X)ψ∗, Dψ∗ = 1

2Hψ
∗, ‖ψ∗‖ = 1.

Let nowψ∗ be given as in the previous lemma. Then∇Xψ∗ = −(II (X)/2) ·ψ∗, so that

T̂ψ∗(X,Z) = − 1

2‖ψ∗‖2
Re〈X · II (Z) · ψ∗ + Z · II (X) · ψ∗, ψ∗〉, X,Z ∈ X(M3

Γ ).

Making use of the relation Re〈X · ψ,ψ〉 = 0, which holds for an arbitrary vector fieldX
and spinorψ , one computes in the base of theYi

T̂ψ∗(X,Z)= − 1

2‖ψ∗‖2
Re

〈
3∑

i,j,k=1

(XiZj + ZiXj ) II ∗
jkYi · Yk · ψ∗, ψ∗

〉

= − 1

2‖ψ∗‖2
Re

〈
−2

3∑
i,j=1

XiZj II ∗
ijψ

∗, ψ∗
〉

= II (X,Z),

since only the summands withi = k are different from zero. In particular, one has

Tr(T̂ψ∗) = − 1

‖ψ∗‖2

3∑
i=1

Re〈Yi · II ∗(Yi) · ψ∗, ψ∗〉 = Tr IIz = H,

and it follows that Tr(T̂ψ∗) is constant ifH is constant. Since the latter only occurs ifH
vanishes identically, we deduce the following proposition.
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Proposition 17. Denote byΣ the induced spinor bundle ofM3
Γ and letM3

Γ be a minimal
surface, i.e., Γ a great circle inS2. Then there exists a T-Killing spinorψ∗ ∈ Γ (Σ) with
Tr(T̂ψ∗) = 0 satisfying the field equation

∇Xψ∗ = −1
2 T̂ψ∗(X) · ψ∗ = −1

2II (X) · ψ∗.

For any other choice of the curveΓ there are no T-Killing spinors.

8. The spectrum of the Dirac operator

In this section we will study some properties of the spectrumσ(D) of the Dirac operator
on the hypersurfacesM3

Γ , Γ being a closed curve, so thatM3
Γ is complete. In general, the

Dirac operatorD on a Riemannian spin manifold(Mn, g) is an elliptic formally self-adjoint
differential operator of first order and, as a differential operator, closable. IfM is complete,
D is essentially self-adjoint as an unbounded operator inL2(Σ) with domainC∞

0 (M
n,Σ)

and the kernels ofD andD2 coincide, see, e.g.[6]. HereL2(Σ) is defined as the completion
of C∞

0 (M
n,Σ), the space of sections inΣ with compact support, with respect to the norm

induced by the scalar product

(ψ1, ψ2) =
∫
Mn

〈ψ1(x), ψ2(x)〉 dMn, ψi ∈ C∞
0 (M

n,Σ).

One hasσ(D) = σ(D̄). If Mn is complete,σ(D̄) is real and consists only of the approx-
imation spectrum since, in this case,D̄ has no residual spectrum. If, additionally,Mn is
non-compact, one has to expect point spectrum as well as continuous spectrum; in particular,
we are interested in the essential spectrum ofD̄, which is defined by

σess(D̄) := {λ ∈ C : there is a Weyl sequence forλandD̄},
and represents the continuous spectrum together with the eigenvalues of infinite multiplicity.
The main result of this section will consist in showing that the infimum ofσ(D̄2) on
(M3

AΓ , ht ), whereΓ is a closed curve andA ∈ U(2), becomes arbitrarily small for arbitrary
values of the parametert , and that 0∈ σ(D̄); for Γ arising by a Möbius transform from a
circle inC with center at the origin, we also show that theL2-kernel ofD andD̄ are trivial,
thus obtaining 0∈ σess(D̄) in this case. As we use the global trivialization(3a) and (3b),
these results hold for the trivial spin structure.

Theorem 4. Let Γ be a closed curve and̄D the closure of the Dirac operator on the
hypersurfaces(M3

AΓ , ht ), endowed with the trivial spin structure, wheret �= 0 andA ∈
U(2). Then, for arbitrary δ > 0,

inf {λ : λ ∈ σ(D̄2)} < δ,
and0 ∈ σ(D̄).

We will prove these statements by using the min–max principle. For this, we need the
following lemmas.
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Lemma 2. TheL2
loc-kernel of D on(M3

Γ , ht ) is non-trivial for arbitrary t andΓ .

Proof. With respect to the realization of the previous section one has forψ ∈ Γ (Σ) that

∇Ykψ =
(

dψ1(Yk)

dψ2(Yk)

)
+ 1

4
√
h22

[
(logh33),�

(
0 −ω2(Yk)

ω2(Yk) 0

)

+2(logD),�

(
0 iω3(Yk)

iω3(Yk) 0

)](
χ1

χ2

)
,

i.e., ∇Y1ψ = dψ(Y1) for everyψ . Then dψj = ∑3
i=1 Yi(ψj )ω

i implies that the Dirac
operator onM3

Γ ∩M4 is given by

Dψ =
(

iY1(ψ1)+ iY2(ψ2)− Y3(ψ2)

−iY1(ψ2)+ iY2(ψ1)+ Y3(ψ1)

)
+ i

�
√
h22

(
1 0

0 −1

)(
ψ1

ψ2

)
,

since

1√
h22

(
1

�
+ 1

2
(logK),� − (logD),�

)
= 2

�
√
h22
.

By takingΣ = �/
√

detht = 1/2�
√
h22 into account one obtains onM3

Γ ∩M4, for the
Dirac operator, the system of partial differential equations

1√
h22

[
i

(
∂

∂�
+ 1

�

)
ψ1 − 1

2�
ΩIψ2

]
= λψ1, (36)

1√
h22

[
−i

(
∂

∂�
+ 1

�

)
ψ2 + 1

2�
ΩIIψ1

]
= λψ2, (37)

where

Ω1 = (r2 + 1)K
∂

∂s
− rṙ�K ∂

∂�
− (r2ϕ̇Γ K + 2i)

∂

∂ϕ
,

ΩII = (r2 + 1)K
∂

∂s
− rṙ�K ∂

∂�
− (r2ϕ̇Γ K − 2i)

∂

∂ϕ
.

Let nowλ = 0 andψ be of the formψ = ψ(�, s) = �−1γ (s). Clearly, one has then

i

(
∂

∂�
+ 1

�

)
ψj (�, s) = iγj (s)

(
− 1

�2
+ 1

�2

)
= 0

as well as

rṙ�
∂

∂�
ψj (�, s) = − rṙ

�
γj (s), (r2 + 1)

∂

∂s
ψj (�, s) = r2 + 1

�

∂

∂s
γj (s).

Equating these expressions yields the relation

∂

∂s
(logγi) = −1

2

∂

∂s
(log(r2 + 1))
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for γ , so that by integration

logγj = −1

2
log(r2 + 1)+ logCj .

Puttingγj = (r2 + 1)−1/2Cj one sees that all spinors of the form

ψ = 1

�
√
r2 + 1

(
C1
C2

)

are harmonic onM3
Γ ∩M4, whereCi ∈ C are constants. Since, further

∫
U

|ψ |2 dM3
Γ =

∫
U

|ψ |2
√

detht ds ∧ d� ∧ dϕ

for an open regionU ⊂ M3
Γ and detht = 4�4h22, the harmonic spinorsψ are in

L2
loc(Σ). �

Lemma 3. Let Γ and t be arbitrary. Then there exists anL2
loc-harmonic spinorψ0 on

M3
Γ ∩M4 which can be approximated pointwise by spinorsψε ∈ L2(Σ)∩Γ (Σ) depending

on a parameterε > 0 such thatDψε ∈ L2(Σ).

Proof. To begin with, note that
√−S converges pointwise to 1/�

√
r2 + 1 ast → 0, and

we therefore introduce the function

Sε := − �4(r2 + 1)2

(�4(r2 + 1)2 + ε4)3/2
, ε > 0,

replacing inS the parametert of the Kähler potential by the new parameterε, one computes

∂

∂�

√
−Sε = 1

�

√
−Sε 2ε4 − �4(r2 + 1)2

(�4(r2 + 1)2 + ε4)
,

(
∂

∂�
+ 1

�

)√
−Sε = 1

�

√
−Sε 3ε4

�4(r2 + 1)2 + ε4
,

as well as

ΩI

√
−Sε = 0, ΩII

√
−Sε = 0,

since(r2 + 1)Sε,s = rṙ�Sε,�. Each other function in� ands of the functional dependence
�
√
r2 + 1 is also harmonic with respect toΩI andΩII . We put

ψε :=
√

−Sε e−3ε4�
√
r2+1

(
C1

C2

)
, Ci ∈ C constant. (38)
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For ε → 0 one has then

ψε → 1

�
√
r2 + 1

(
C1

C2

)
.

As remarked,ΩIψε = 0,ΩIIψε = 0, so that

Dψε = i√
h22

(
∂

∂�
+ 1

�

)
[
√

−Sε e−3ε4�
√
r2+1]

(
C1

−C2

)

= 3ε4i

�
√
h22

(
1

�4(r2 + 1)2 + ε4
− �

√
r2 + 1

)√
−Sε e−3ε4�

√
r2+1

(
C1

−C2

)
.

Then one computes, sinceε > 0,

‖ψε‖2
L2 =

∫
(−Sε)e−6ε4�

√
r2+1(|C1|2 + |C2|2)dM3

Γ

= 2πC
∫ ∞

0

∫ LΓ

0
(−Sε)

√
detht e−6ε4�

√
r2+1 ds ∧ d� < ∞,

whereC = |C1|2 + |C2|2, as well as

‖Dψε‖2
L2 =

∫
(−Sε)e−6ε4�

√
r2+1(|C1|2 + |C2|2) 9ε8

h22�2

×
(

1

�4(r2 + 1)2 + ε4
− �

√
r2 + 1

)2

dM6
Γ

= 2πC
∫ ∞

0

∫ LΓ

0
(−Sε)

√
detht e−6ε4�

√
r2+1 9ε8

h22�2

×
(

1

�4(r2 + 1)2 + ε4
− �

√
r2 + 1

)2

ds ∧ d�,

i.e., theψε areL2-approximations ofL2
loc-harmonic spinors,

L2(Σ) ∩ Γ (Σ) * ψε → ψ0 ∈ L2
loc(Σ),

Dψε being inL2, too. �

In the following we will use the abbreviations:

pε :=
√

detht e−6ε4�
√
r2+1, qε := 9ε8

h22�2

(
1

�4(r2 + 1)2 + ε4
− �

√
r2 + 1

)2
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for ε → 0 we then have that

−Sεpε →
√

detht
�2(r2 + 1)

, Sεpεqε → 0

pointwise. Letψε be as in(38). While ‖ψε‖L2 becomes unbounded forε → 0, it does not
follow that ‖Dψε‖L2 → 0 for smallε. Nevertheless, we will show that for givenδ > 0
andε small enough,‖Dψε‖L2/‖ψε‖L2 < δ, thus provingTheorem 4. For this we have
to determine precise estimates for the Rayleigh quotient‖Dψε‖2

L2/‖ψε‖2
L2 from above,

where the point is to find bounds not depending on�.

Proof of Theorem 4. Letψε be as inLemma 3, Eq. (38). One has

−Sε
√

detht = 2
√

2�7(r2 + 1)3

(�4(r2 + 1)2 + ε4)3/2(�4(r2 + 1)2 + t4)1/4 ,

∂

∂�
− Sε

√
detht = 2

√
2(r2 + 1)3�6[�4(r2 + 1)2(t4 + 6ε4)+ 7ε4t4]

(�4(r2 + 1)2 + ε4)5/2(�4(r2 + 1)2 + t4)5/4 > 0,

sup
�>0
(−Sε

√
detht ) = 2

√
2√

r2 + 1
,

therefore−Sε
√

detht is strictly increasing and tends to 2
√

2/
√
r2 + 1 as� → ∞, so that

it seems natural to estimate‖ψε‖2
L2 from below according to

‖ψε‖2
L2 = 2πC

∫ LΓ

0

∫ ∞

0
(−Sεpε)d� ∧ ds ≥ 2πC

∫ L

0
inf �≥P (−Sε

√
detht )

×
∫ ∞

P

e−6ε4�
√
r2+1 d� ∧ ds.

HereP > 0 is a cutting point to be determined in a convenient manner, such that the resulting
lower bound for‖ψε‖2

L2 is as great as possible. A possible choice would be the turning

pointPw of −Sε
√

detht , which can be calculated by the condition(−Sε
√

detht ),�2 = 0

by solving the equation of third degree inu2
1 = �4(r2 + 1)2

(u2
1 + ε4)(u2

1 + t4)[30u2
1ε

4 + 42ε4t4] = 5u2
1[t4(u2

1 + ε4)2 + 12ε4(u2
1 + t4)2].

Since this turns out to be a little bit involved and does not necessarily lead to optimal
estimates, we look for a condition for� instead such that

0<
∂

∂�
(−Sε

√
detht )|� ≤ a $ 1, (39)

i.e.,

[�4(r2 + 1)2]6/5[6ε4(�4(r2 + 1)2 + t4)+ t4(�4(r2 + 1)2 + ε4)]4/5

≤
(
a

2
√

2

)4/5

(�4(r2 + 1)2 + ε4)2(�4(r2 + 1)2 + t4).
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This is fulfilled if

[(�4(r2 + 1)2+t4)(6ε4 + t4)]4/5 ≤
(
a

2
√

2

)4/5

[�4(r2 + 1)2]4/5(�4(r2 + 1)2 + t4),

where we assumedε < t . For smallε andt this does not represent a much stronger condition.
Again this is assured if(

2
√

2(6ε4 + t4)
a

)4

≤ [�4(r2 + 1)2]5,

and we put

Pa := µ(ε, t, a)
1√
r2 + 1

, where µ(ε, t, a) := 5

√
2
√

2(6ε4 + t4)
a

.

Then one calculates

inf
�≥Pa

(−Sε
√

detht ) = −Sε
√

detht |Pa = M(ε, t, a)
1√
r2 + 1

,

the functionM being given by

M(ε, t, a) := 2
√

2µ7

(µ4 + ε4)3/2(µ4 + t4)1/4 .

We remark that, asε → 0, the functionsµ andM tend to a finite value that is independent
of �, namely

lim
ε→0

µ(ε, t, a) = 5

√
2
√

2t4

a
, lim

ε→0
M(ε, t, a) = 2

√
2


 5

√
(2

√
2/at)4

5
√
(2

√
2/at)4 + 1




1/4

,

the cutting pointPa also remaining finite. We finally obtain an estimate for‖ψε‖L2 of the
form

‖ψε‖2
L2 ≥ 2πC

∫ LΓ

0
inf
�≥Pa

(−Sε
√

detht )
∫ ∞

Pa

e−6ε4�
√
r2+1 d� ∧ ds

= 2πCM(ε, t, a)
∫

1√
r2 + 1

e−6ε4Pa

√
r2+1

6ε4
√
r2 + 1

ds.

Note thatM tends to 2
√

2 if, additionally,a · t → 0 so that the value of−Sε
√

detht
at the pointPa becomes arbitrarily close to sup�(−Sε

√
detht ) = 2

√
2/r2 + 1. This can

always be achieved by choosinga small enough, though for bigt the cutting pointPa
becomes big, too. Nevertheless, we will see that this is of no relevance for later argu-
ments. For smallt we do not lose too much by the above estimate, since thenPa is also
small.
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We turn now to estimating‖Dψε‖2
L2. First, one has

−Sεqε
√

detht = 9
√

2ε8�3(r2 + 1)
4
√
�4(r2 + 1)2 + t4

(�4(r2 + 1)2 + ε4)3/2

×
(

1

�4(r2 + 1)2 + ε4
− �

√
r2 + 1

)2

< ∞,

and we set

∆2 := �2

�4(r2 + 1)2 + ε4

(
1

�4(r2 + 1)2 + ε4
− �

√
r2 + 1

)2

,

Λ := �(r2 + 1)
4
√
�4(r2 + 1)2 + t4√
�4(r2 + 1)2 + ε4

,

which yields−Sεqε
√

detht = 9
√

2ε8Λ∆2. The functionΛ vanishes only for� = 0. The
zeros of∆ are� = 0 and the solutions of the equation of fifth degree in�,

�
√
r2 + 1(�4(r2 + 1)2 + ε4)− 1 = 0. (40)

Now �
√
r2 + 1 becomes zero for� = 0 and is strictly increasing;(�4(r2 + 1)2 + t4)−1

is equal tot−4 for � = 0 and strictly decreasing.Eq. (40)has therefore, exactly one real
solution; it is positive and will be denoted in the following byQ. Note thatQ is greater
than 0 and bounded from above by 1/

√
r2 + 1. Since−Sεqε

√
detht is non-negative and

(−Sεqε
√

detht ),� = 9
√

2ε8∆(2Λ∆,�+∆Λ,�), the numbers 0 andQ are the only absolute
minima of−Sεq

√
detht . The absolute value of∆ can then be estimated according to

|∆| = �√
�4(r2 + 1)2 + ε4

∣∣∣∣ 1

�4(r2 + 1)2 + ε4
− �

√
r2 + 1

∣∣∣∣

≤




�2
√
r2 + 1√

�4(r2 + 1)2 + ε4
for � ≥ Q,

�

(�4(r2 + 1)2 + ε4)3/2
for � ≤ Q.

The relation

∂

∂�

(
�2

√
r2 + 1√

�4(r2 + 1)2 + ε4

)
= 2�ε4

√
r2 + 1

(�4(r2 + 1)2 + ε4)3/2
> 0

as well as

sup
�

�2
√
r2 + 1√

�4(r2 + 1)2 + ε4
= 1√

r2 + 1
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imply the estimate

|∆| ≤ 1√
r2 + 1

for � ≥ Q.

In a similar way one sees by

∂

∂�

(
�

(�4(r2 + 1)2 + ε4)3/2

)
= ε4 − 5�4(r2 + 1)2

(�4(r2 + 1)2 + ε4)5/2
,

that�(�4(r2 + 1)2 + ε4)−3/2 has a maximum at�max = ε/
4
√

5
√
r2 + 1 with

�

(�4(r2 + 1)2 + ε4)3/2 |�max

= 1

ε5 4
√

5(6/5)3/2
√
r2 + 1

,

and we obtain the estimate

|∆| ≤ 1

ε5 4
√

66/55
√
r2 + 1

for � ≤ Q.

NowΛ tends asymptotically to
√
r2 + 1 as� → ∞ and one computes

∂

∂�
Λ = (r2 + 1)[ε4t4 + (2ε4 − t4)�4(r2 + 1)2]

(�4(r2 + 1)2 + ε4)3/2(�4(r2 + 1)2 + t4)3/4 ,

so that for 2ε4 < t4 one sees thatΛhas a maximum at�′
max = (εt/

4
√
t4 − 2ε4)(1/

√
r2 + 1);

otherwise it is strictly increasing. Inserting�′
max in Λ we obtain

Λ|�′
max

=
√
r2 + 1

t

ε
N(ε, t),

whereN(ε, t) := t/(
√

2 4
√
t4 − ε4), and thus, forΛ, the estimate

Λ ≤



√
r2 + 1 for 2ε4 ≥ t4,

√
r2 + 1N(ε, t)

t

ε
for 2ε4 < t4.

As ε → 0, the functionN tends to 1/
√

2. Summarizing we find that, under the assumption
that 2ε4 < t4, −Sεq

√
detht can be estimated from above according to

−Sεqε
√

detht = 9
√

2ε8Λ∆2 ≤


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9
√

2N(ε, t)√
r2 + 1

tε7 for � ≥ Q,

9
√

2N(ε, t)

κ2
√
r2 + 1

t

ε3
for � ≤ Q,
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whereκ := 4
√

66/55; finally we obtain for‖Dψε‖L2, assumingε to be small, that

‖Dψε‖2
L2 ≤ 2πC

∫ LΓ

0
sup
�≤Q

(−Sεqε
√

detht )
∫ Q

0
e−6�ε4

√
r2+1 d� ∧ ds

+ 2πC
∫ LΓ

0
sup
�≥Q

(−Sεqε
√

detht )
∫ ∞

Q

e−6�ε4
√
r2+1 d� ∧ ds

= 2πC
∫ LΓ

0

9
√

2N(ε, t)t√
r2+1


 1

κ2ε3

1−e−6Qε4
√
r2+1

6ε4
√
r2+1

+ε7 e−6Qε4
√
r2+1

6ε4
√
r2+1


ds.

Under the assumption that 2ε4 < t4, we obtain the estimate

‖Dψε‖2
L2

‖ψε‖2
L2

≤ 9
√

2N(ε, t)t

M(ε, t, a)

∫
(ε−3κ−2(1 − e−6Qε4

√
r2+1)+ ε7 e−6Qε4

√
r2+1)ds∫

e−6Paε4
√
r2+1 ds

for the Rayleigh quotient. The expression

e−6Qε4
√
r2+1 − 1

ε3
=

∞∑
k=1

1

k!
(−6Q

√
r2 + 1)kε4k−3

tends to zero asε → 0, so that the Rayleigh quotient itself becomes arbitrarily small for
ε → 0. Since for closed curvesΓ the hypersurfacesM3

Γ are complete, both̄D andD̄2 are
self-adjoint, and by the min–max principle, see, e.g.[21], one has

inf {λ : λ ∈ σ(D̄2)} = inf
0�=ψ∈D(D̄2)

‖D̄ψ‖2
L2

‖ψ‖2
L2

,

sinceD̄2 is bounded from below. The domain of definition of the closureD̄ of the Dirac
operator is given by

D(D̄)={ψ ∈ L2(Σ) : ∃ a seriesψn∈D(D) : ψn→ψ andDψn converges in L2(Σ)},
and in caseψ ∈ D(D̄) ∩ Γ (Σ), one hasD̄ψ = Dψ . The first assertion of the theorem
then follows by noting that the inequalities

∫ ‖ψε‖2 dM3
Γ < ∞,

∫ ‖Dψε‖2 dM3
Γ < ∞ and∫ ‖D2ψε‖2 dM3

Γ < ∞ imply thatψε lies inD(D̄) andD(D̄2), respectively, sinceM3
Γ is

assumed to be complete. To see this, letp0 ∈ M3
Γ be fixed andµ(x) : R → [0,1] be the

function defined in(29). Following[6] we put

bn(p) := µ

(
2 − dist(p, p0)

n

)
, n = 1,2, . . . , p ∈ M3

Γ .

Thenbn ≡ 1 onBn(p0) and suppbn ⊂ B2n(p0). Further, one sees thatbn is Lipschitz
continuous and, hence, almost everywhere differentiable with|gradbn|2 ≤ M/n2, where
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M is a constant. SinceM3
Γ is complete, the closed envelopes of the geodesic ballsBn(p0)

are compact inM3
Γ and therefore

ψn := bnψε ∈ D(D) = C∞
0 (M

3
Γ ,Σ).

Since‖ψε‖2
L2 < ∞, one hasψn → ψε in L2(Σ). In the same way‖Dψε‖2

L2 < ∞ implies

with the relationDψn = bnDψε + gradbn · ψε thatDψn → Dψε in L2(Σ).
Consequently, one obtainsψε ∈ D(D̄), and in a similar wayDψε ∈ D(D̄). Finally, by

settingψ̃ε := ψε/‖ψε‖L2, we obtain a sequence of elements inD(D̄)∩Γ (Σ) of unit length
for which‖Dψ̃ε‖L2 → 0 asε → 0, which implies that 0∈ σapprox(D̄) = σ(D̄). �

In the following, we will study theL2-kernel of the Dirac operator in case thatΓ is a
circle inC with center at the origin and radiusr ≡ r0. Letp = Ψ (s, �, ϕ) ∈ M3

Γ ∩M4 and
z = eiτ ∈ S1. As explained inSection 5, in this case

κz : M3
Γ ∩M4 → M3

Γ ∩M4, κz(p) = Ψ (s, �, (ϕ + τ) mod 2π),

µz : M3
Γ ∩M4 → M3

Γ ∩M4, µz(p) = Ψ ((s + τ) mod 2πr, �, ϕ)

represent two isometricS1-actions onM3
Γ ∩M4. Putting

(κzψ)(p) := ψ(κz−1(p)) and (µzψ)(p) := ψ(µz−1(p))

one obtains two continuous unitaryS1-representations inL2(Σ), since by the invariance of
the volume form underκz andµz the equality∫

〈ψ(κz−1(p)), ϕ(κz−1(p))〉 dM3
Γ (p) =

∫
〈ψ(p), ϕ(p)〉(κz)∗(dM3

Γ )(p),

ϕ, ψ ∈ L2(Σ),

and a similar one forµz hold. Then, by the theorem of Stone, there exist uniquely determined
self-adjoint operatorsM andM1 such thatκeiτ = eiτM , µeiτ = eiτM1. They are given by
M = i∂ϕ ,M1 = i∂s , while the corresponding eigenfunctions are determined by

i
∂

∂ϕ
eiαϕ = −α eiαϕ, i

∂

∂s
eiαϕΓ = −βϕ̇Γ eiβϕΓ ,

whereα andβ are integers anḋϕΓ = ε/r, ε = ±1. Because ofD|p = D|κz(p) = D|µz(p),
the operatorD commutes withκz andµz, so that each of the eigensubspacesEλ of D and
D̄ corresponding to the eigenvalueλ decomposes into the eigensubspaces of the unitary
(S1 × S1)-action according to

Eλ = ⊕
α,β
Hλα ⊗Hλβ,

in concordance with the spectral decomposition of the operatorsM andM1; in particular,
one has KerL2(D̄) = ⊕α,βHα ⊗Hβ . A general solution of the Dirac equationDψ = λψ

onM3
Γ ∩M4 can then be written as a product of the form

ψ(s, �, ϕ) = eiαϕ eiβϕΓ (s)R(�), (41)
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whereR is a function of�. Thus, the system of partial differentialequations (36)leads to
a system of ordinary differential equations

1√
h22

[
i

(
∂

∂�
+ 1

�

)
R1− i

2�
((r2 + 1)Kβϕ̇Γ − (r2ϕ̇Γ K+2i)α)R2

]
= λR1,

1√
h22

[
−i

(
∂

∂�
+ 1

�

)
R2+ i

2�
((r2 + 1)Kβϕ̇Γ − (r2ϕ̇Γ K − 2i)α)R1

]
= λR2 (42)

for the radial functionR(�). Introducingδ := ((r2 + 1)β − r2α)ϕ̇Γ /2, we put

f := δK − iα

�
, g := δK + iα

�
,

and make the substitution

χ := C�


 eiλ

∫ √
h22 d�R1(�)

e−iλ
∫ √

h22 d�R2(�)


 ,

so that one obtains forχ the system of differential equations

d

d�

(
χ1

χ2

)
= 1

�

(
χ1

χ2

)
+

 iλ

√
h22 0

0 −iλ
√
h22


( χ1

χ2

)

+C�

 eiλ

∫ √
h22 d� 0

0 e−iλ
∫ √

h22 d�




×

−1/� − iλ

√
h22 f

g −1/� + iλ
√
h22


(R1

R2

)
=

 0 f̃

g̃ 0


( χ1

χ2

)

with f̃ := e2iλ
∫ √

h22 d�f , g̃ := e−2iλ
∫ √

h22 d�g. Note that

∫ √
h22 d�= (r2 + 1)�2

√
2(�4(r2 + 1)2 + t4)1/4

(
1 + �4(r2 + 1)2

t4

)1/4

×F
(

1

2
,

1

4
,

4

3
,−�

4(r2 + 1)2

t4

)
.

If α or β are different from zero, neitherf norg vanish; differentiating again gives

(χ1),�2 = f̃,�χ2 + f̃ (χ2),� = (log f̃ ),�(χ1),� + f̃ g̃χ1,

(χ2),�2 = g̃,�χ1 + g̃(χ1),� = (log g̃),�(χ2),� + f̃ g̃χ2,
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and one obtains the differential equations of second order

d2χ1

d�2
(�)+ p(�)dχ1

d�
(�)+ q(�)χ1(�) = 0, (43)

d2χ2

d�2
(�)+ p̄(�)dχ2

d�
(�)+ q(�)χ2(�) = 0, (44)

where

p(�) = 1

�
− δ K,�

δK − iα
− 2iλ

√
h22, q(�) = − 1

�2
(δ2K2 + α2) ≤ 0.

If one putsχ2 := f̃−1(χ1),� andχ1 := g̃−1(χ2),�, respectively, each solution of(43)
or (44) corresponds to a solution of the above system of differential equations forχ , i.e.,
solving the latter system of two differential equations of first order is equivalent to finding a
solution of the differential equation of second order(43)or (44). The latter are differential
equations of Sturm–Liouville type and our next goal will consist in showing that, forλ = 0
andα �= 0, they cannot have any bounded solutions and, in particular, that they do not lead
to L2-integrable solutionsΨ of the Dirac equation. For this purpose, we will make use of
the following theorem proved by Hartman[11].

Theorem 5 (Hartman).Let I be an interval inR andw(x) a solution of the differential
equation

ẅ(x)+ p(x)ẇ(x)+ q(x)w(x) = 0, x ∈ I

with continuous complex valued coefficients p and q. If

Re[−q(x)− 1
4|p(x)|2] ≥ 0, (45)

thenr(x) = |w(x)|2 is concave, i.e., r̈(x) ≥ 0.

Now, in our case one computes

Rep(�)= 1

2
(p + p̄) = 1

�
− δK,�

2

(
1

δK − iα
+ 1

δK + iα

)
= 1

�
− δ2KK,�
δ2K2 + α2

,

Im p(�)= 1

2i
(p − p̄) = −δK,�

2i

(
1

δK − iα
− 1

δK + iα

)
− 2λ

√
h22

= − αδK,�

δ2K2 + α2
− 2λ

√
h22,
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and thus

−q(�)− 1

4
|p(�)|2 = 1

�2

(
δ2K2 + α2 − 1

4

)
+ δ2K2(logK),�

δ2K2 + α2

×
(

1

2�
− (logK),�

4
− αλ

√
(r2 + 1)K

δK

)
− λ2(r2 + 1)K.

Because of

1

2�
− (logK),�

4
= 1

2�

(
1 − t4

�4(r2 + 1)2 + t4
)
> 0

one recognizes that, forλ = 0 andα �= 0, the condition(45) is fulfilled for the differ-
ential equations (43) and (44), while for λ �= 0 the expression−q(�) − |p(�)|2/4 tends
asymptotically to−2λ2(r2 + 1) for � → ∞. For λ = 0 andα = 0, it becomes also
negative as� → 0. As a consequence of the preceding theorem we obtain the following
lemma.

Lemma 4. Assume thatλ = 0 andα �= 0, and letχ1, χ2 be solutions of the differential
equations(43)and(44), respectively. Then|χ1|2 and|χ2|2 are concave.

We are now in a position to prove the announced theorem.

Theorem 6. LetΓ be a circle inC with center at the origin and radiusr ≡ r0, andψ a
spinor on(M3

Γ ∩M4, ht ) of the form(41). If ψ is a solution of the Dirac equation with
respect to the trivial spin structure corresponding to the eigenvalueλ = 0 and if α �= 0,
then‖ψ‖2

L2 = ∞.

Proof. LetDψ = 0 andα �= 0. By our previous considerationsχ1 = C�R1(�) satisfies
the differentialequation (43)and we consider its continuation

d2χ1

dz2
(z)+ p(z)dχ1

dz
(z)+ q(z)χ1(z) = 0, z ∈ C, (46)

to the whole complex domain. Forα �= 0 bothp(z) andq(z), z ∈ C, are meromorphic
functions with poles of first and second orders at zero, respectively. The differentialequation
(46) is therefore, of Fuchssian type and zero is a regular singular point. Letχ1,1, χ1,2 form
a fundamental system of solutions of(46); they can be expanded around the origin into the
uniformly convergent series

χ1,1(z) = zε1

(
1 +

∞∑
n=1

anz
n

)
, χ1,2(z) = zε2

(
1 +

∞∑
n=1

bnz
n

)
,

wherean, bn are constants andε1, ε2 are the roots of the equation

ε2 + (p0 − 1)ε + q0 = 0
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with

q0 = limz→0 z
2q(z), p0 = limz→0 zp(z),

see, e.g.[23]. One obtainsε1 + ε2 = 1 − p0, ε1ε2 = q0, which yields in our case that
ε1 + ε2 = 1 − 1 = 0, ε1ε2 = −α2, and henceε1 = α, ε2 = −α. Evidently, analogous
considerations hold forχ2 = C�R2(�), too. Now,

‖ψ‖2
L2 =

∫
‖ψ(s, �, ϕ)‖2 dM3

Γ

=
∫ 2π

0

∫ ∞

0

∫ 2πr

0

1

�2
(|χ1(�)|2 + |χ2(�)|2)

√
detht ds ∧ d� ∧ dϕ.

In order that the above integral remains bounded it is necessary that|χ1(�)|2 and|χ2(�)|2
decrease with order greater than 1 for� → ∞, since

1

�2

√
detht =

√
8�(r2 + 1)

4
√
�4(r2 + 1)2 + t4

∼ constant,

therefore,|χi(�)|2 < 1/�, i = 1,2, must hold for large�. As, moreover,|χi(�)|2 is smooth,
there exists a�0 such that(|χi(�0)|2),� ≤ −1/�2

0 < 0. However, byLemma 4one has that
|χi(�)|2,� is monotone increasing so that

d

d�
|χi(�)|2 ≤ − 1

�2
0

< 0 for all � ≤ �0

must hold. Consequently,|χi(�)|2 is monotone decreasing and strictly monotone decreasing
for � ≤ �0. Let us now assume thatα = 1,2, . . . without loss of generality. Ifχ(�) is not
identically zero, it follows that, in a neighborhood of the origin, its componentsχ1 andχ2
must have the developments

χi(�) = Ai�
−α
[

1 +
∞∑
n=1

cin�
n

]
,

whereAi, cin are constants; otherwise one would have(|χi(0)|2),� ≥ 0. Let now�1 be
sufficiently small so thatχ1 andχ2 can be developed as above and, in particular,

∣∣∣∣∣
∞∑
n=0

Recin�
n

∣∣∣∣∣ < 1

2
for all � < �1.
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Then∫ 2π

0

∫ �1
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= 4π2r
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�1
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and hence‖ψ‖2
L2 = ∞. �

We turn now to the remaining case ofα = 0. If ψ(s, �, ϕ) = eiβϕΓ R(�) is a harmonic
spinor onM3

Γ ∩M4, the components ofχ = �R(�) satisfy the differentialequations (43)
and (44), respectively, where

p = 1

�
− (logK),�, q = −f 2 = −g2 = −

(
δK

�

)2

,

i.e., forχ1 andχ2 one obtains the differential equations
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d�2
(�)+ p(�)dχi

d�
(�)− f 2(�)χi(�) = 0,

and these can be integrated explicitly. Indeed, putting
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√
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one verifies that
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= 2�(r2 + 1)δ√
�4(r2 + 1)2 + t4

χ(�) = f (�)χ(�),

d2χi

d�2
(�)=

(
f 2(�)+ f

(
− 1

�
+ (logK),�

))
χi(�) = (f 2(�)− f (�)p(�))χi(�).
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We continueψ to a spinor onM3
Γ by settingψ|Γ ≡ 0. Let nowϕ̇Γ = 1/r andβ =

−1,−2, . . . , so thatδ = (r2 + 1)β/2r ≤ β < 0. Then one computes

∫
‖ψ(s, �, ϕ)‖2 dM3

Γ = 4π2r
B2

1 + B2
2

t4δ

∫ √
8�(r2 + 1)

4
√
�4(r2 + 1)2 + t4

×
(
�2(r2 + 1)+

√
�4(r2 + 1)2 + t4

)2δ

d� < ∞,

so thatψ ∈ L2(M3
Γ ). Nevertheless,ψ is not smooth at� = 0, so thatψ /∈ D(D̄). Thus we

have completely determined theL2-kernel of the Dirac operator in case thatΓ is a circle
in C with center at the origin and obtain the following theorem.

Theorem 7. LetΓ be a generalized circle inC that arises by a Möbius transform from a
circle in C with center at the origin, and D the Dirac operator on(M3

Γ , ht ) with respect to
the trivial spin structure. Then

KerL2(D|(M3
Γ ∩M4)) = ⊕

β=−1,−2,...
H0 ⊗Hβ, (47)

while, onM3
Γ , theL2-kernel of the Dirac operator and its closure are trivial. In particular,

0 ∈ σL2

ess(D̄).

Proof. LetΓ be a circle inC with center around the origin and radiusr ≡ r0. Without loss
of generality we can assume thatϕ̇Γ = 1/r. Forβ = −1,−2,−3, . . . and by the previous
considerations

ψβ(s, �, ϕ)= eiβϕΓ

�
eδ arcsinh(�2(r2+1)/t2)

(
B1

B2

)

= eiβϕΓ

�t2δ

(
�2(r2 + 1)+

√
�4(r2 + 1)2 + t4

)δ (B1

B2

)

are harmonicL2-spinors onM3
Γ ∩ M4, whereδ = (r2 + 1)β/2r, Bi are constants and

ψβ|Γ ≡ 0. By Theorem 6, apart from the trivial representation no other representations of
theS1-actionκz can occur in theL2-kernel of the Dirac operator and we obtain(47) in case
thatΓ = ∂B(0, r). The general statement then follows from the fact thatM3

Γ andM3
AΓ

are isometric forA ∈ U(2). If, further,ψ ∈ L2(Σ) is a harmonic spinor with respect to
D, then the regularity theorem for solutions of elliptic differential equations implies that
ψ ∈ Γ (Σ). However, since allL2-harmonic spinors have to be linear combinations of the
ψβ , which, nevertheless, are not regular at� = 0, theL2-kernel of the Dirac operator and
its closure turn out to be trivial. Since, byTheorem 4, zero belongs to the spectrum ofD̄,
it follows that 0∈ σL2

ess(D̄). �
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9. On the spectrum of the Laplacian

In this section we will continue the study of the Laplacian on the hypersurfacesM3
Γ ,

which we began inSection 6. Unlike the Dirac operator, the spectrum of the Laplacian on
an open complete manifold is related to the underlying geometry in a much more intrinsic
way. Thus, lower bounds for the Ricci tensor imply upper bounds for its smallest spectral
value, and by studying the geodesic flow and the exponential growth of the manifold one
obtains statements about the infimum of the essential spectrum of the Laplace operator and
vice versa.

Operating on functions, the Hodge–Laplace operator and the Bochner–Laplace operator
coincide, and we have∆ = ∇∗∇ : C∞(M3

Γ ) → C∞(M3
Γ ) on the hypersurfacesM3

Γ ;
further, sinceM3

Γ is complete for a closed curveΓ , ∆ is essentially self-adjoint as an
operator inL2(M3

Γ )with domainC∞
0 (M

3
Γ ), where the domain of̄∆ is given by the Sobolev

space2Ω0(M3
Γ ) = H 2(M3

Γ ). One hasσ(∆) = σ(∆̄). Now, for the smallest spectral value
of the Laplacian the following proposition holds in general (see, e.g.[5]).

Proposition 18. Let (Mn, g) be an open complete Riemannian manifold, the components
of the Ricci tensor being bounded from below by−(n−1)C, whereC ≥ 0.Then the smallest
spectral value of the Laplacianµ0(M

n) satisfies

µ0(M
n) ≤ 1

4(n− 1)2C.

Hence, as an immediate consequence we obtain the following statement.

Corollary 5. LetΓ be a closed curve inC.Then the smallest spectral value of the Laplacian
on the hypersurfaces(M3

AΓ , ht ) satisfiesµ0(M
3
AΓ ) ≤ t−2, wheret �= 0 andA ∈ U(2).

Proof. By Theorem 1, R11 ≥ R22 ≥ R33. Further, sinceR33 is strictly increasing one has
that inf� R33 = R33|�=0 = −2/t2 so thatRij ≥ −2C, whereC = t−2. The assertion then
follows from the proposition above. �

In the sequel we will proceed to find estimates for the infimum of the spectrum of∆̄

on the considered hypersurfaces by using again the min–max principle, and show that it
becomes arbitrarily close to zero for any closed curveΓ , so thatµ0(M

3
AΓ ) = 0, where

A ∈ U(2). Since, byCorollary 4, this estimate gives also an estimate for the infimum of
the essential spectrum, we are in position to compute the exponential growth ofM3

Γ for an
arbitrary closed curve, thus generalizing the results previously obtained inSection 5, since,
as already mentioned, the infimum of the essential spectrum of the Laplacian is closely
related to the exponential growth of the underlying manifold. More precisely, the following
theorem proved by Brooks[3] holds.

Theorem 8(Brooks). Let (Mn, g) be an open complete manifold of infinite volume. Then

inf σess(∆̄) = 1
4µ

2
∞.
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Consequently, the exponential growth of the hypersurfacesM3
Γ must be zero for any

closed curveΓ . Let us now prove these assertions.
First note that forϕ ∈ H 2(M3

Γ ),

∫
(ϕ,∆ϕ)dM3

Γ =
∫
(∇ϕ,∇ϕ)dM3

Γ

holds, where(·, ·) denotes the scalar product inC∞(M3
Γ ) and

(∇ϕ,∇ϕ) :=
∑
(∇Yi ϕ,∇Yi ϕ) =

∑
Y 2
i (ϕ) = |gradϕ|2.

By the min–max principle we have

inf σ(∆̄) = inf
0�=f∈D(∆̄)

∫ |gradf |2 dM3
Γ∫ |f |2 dM3

Γ

. (48)

Now we consider the function

Hε :=
√

2
4
√
�4(r2 + 1)2 + ε4

, ε > 0,

which is derived from the traceH of the second fundamental form, and by means of this
function we generate estimates forσess(∆̄).

Theorem 9. Let Γ be a closed curve inC and ∆̄ the closure of the scalar Laplacian on
(M3

AΓ , ht ), whereA ∈ U(2). Then, for arbitrary δ > 0,

inf σess(∆̄) < δ.

Proof. By Corollary 3, Hα is L2-integrable overM3
Γ for α > 3/2. One computes further

that

Y1(H
α
ε ) = 1√

h22

∂

∂�

(
2√

�2(r2 + 1)2 + ε4

)α/2
= − 1√

h22

α�3(r2 + 1)2

�4(r2 + 1)2 + ε4
Hαε ,

the derivativesY2(H
α
ε ) andY3(H

α
ε ) being zero so that

‘ |gradHαε |2 = Y 2
1 (H

α
ε ) = α2�4(r2 + 1)2

2(�4(r2 + 1)2 + ε4)2

√
�4(r2 + 1)2 + t4H2α

ε .
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Forα = 2, and assumingt ≤ ε, the monotony of the integral implies

∫
H4
ε dM3

Γ = 8
√

8π
∫

�3(r2 + 1)

(�4(r2 + 1)2 + ε4) 4
√
�4(r2 + 1)2 + t4

ds ∧ d�

≥ 8
√

8π
∫

�3(r2 + 1)

(�4(r2 + 1)2 + ε4)5/4
ds ∧ d�

= 8
√

8π
∫ L

0

[
− 1

(1 + r2)(�4(r2 + 1)2 + ε4)1/4

]∞

0
ds

= 8
√

8π

ε

∫ L

0

1

r2 + 1
ds.

Similarly, under the assumption thatt ≤ ε, one computes∫
|gradH2

ε |2 dM3
Γ = 16

√
8π
∫

�7(r2 + 1)3

(�4(r2 + 1)2 + ε4)3
4
√
�4(r2 + 1)2 + t4 d� ∧ ds

≤ 16
√

8π
∫

�7(r2 + 1)3

(�4(r2 + 1)2 + ε4)11/4
d� ∧ ds

= 16
√

8π
∫ L

0

([
− 7�4(r2 + 1)2 + 4ε4

21(�4(r2 + 1)2 + ε4)7/4(r2 + 1)

]∞

0

)
ds

= 64
√

8π

21ε3

∫ L

0

1

(r2 + 1)
ds,

showing thatH2
ε ∈ D(∆̄). Summing up we have∫ |gradH2
ε |2 dM3

Γ∫
H4
ε dM3

Γ

≤ 8

21ε2
for all 0< t < ε;

using (48) one then obtains the stated bound from above for the essential spectrum of
the Laplacian since, byCorollary 4, zero can be noL2-eigenvalue of∆ and, hence,
of ∆̄. �

Corollary 6. Let t > 0 be arbitrary andA ∈ U(2). Then for any closed curveΓ in C,
(M3

AΓ , ht ) has subexponential growth.

Proof. This is a consequence ofTheorems 8 and 9. �
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